Taking the logarithm leads to
$$
\frac{1}{n} \ln (n!) - \ln n = \frac{1}{n} \sum_{k=1}^n \ln k - \ln n = \frac{1}{n}\sum_{k=1}^n \ln \frac{k}{n} \longrightarrow \int_0^1 \ln x \, dx.
$$
It's easy to see (using integration by parts) that
$$
\int_0^1 \ln x \, dx = x\ln x \big|_0^1 - \int_0^1 \, dx = -1.
$$
This means that
$$
\sqrt[n]{\frac{n!}{n^n}} = \exp \left( \frac{1}{n} \ln (n!) - \ln n\right) \to e^{-1}.
$$
Edit:
I'll also add some comments on why we have the convergence
$$
\frac{1}{n}\sum_{k=1}^n \ln \frac{k}{n} \longrightarrow \int_0^1 \ln x \, dx.
$$
As @DanielSchepler pointed out in comments this fact is non-trivial since the right-hand-side integral is an improper one.
Summing simple inequalities
$$
\frac{1}{n} \ln \frac{k}{n} \le \int_{\frac{k}{n}}^{\frac{k+1}{n}} \ln x \, dx \le \frac{1}{n} \ln \frac{k+1}{n}
$$
one can get
$$
\frac{1}{n} \sum_{k=1}^{n-1} \ln \frac{k}{n} \le \int_{\frac{1}{n}}^{1} \ln x \, dx \le \frac{1}{n} \sum_{k=2}^{n} \ln \frac{k}{n}.
$$
Therefore,
$$
\int_{\frac{1}{n}}^1 \ln x \, dx + \frac{1}{n} \ln \frac{1}{n} \le \frac{1}{n} \sum_{k=1}^n \ln \frac{k}{n} \le \int_{\frac{1}{n}}^1 \ln x \, dx.
$$
This gives a necessary convergence. Of course, the same procedure can be applied to any monotone function with convergent improper integral.