Find a way to calculate $\begin{equation} f(x)= \frac{1-e^{-2x^{2}}}{x\sin x} \end{equation}$ correctly. Determine $f(0.00001)$ correctly to $12$ decimal places.
I try to find the solution with Taylor. After a long calculation I have: \begin{equation} 1-e^{-2x^{2}}=2x^2-2x^4+\frac{4x^6}{2}-\frac{2x^8}{3}+\cdots \end{equation} and \begin{equation} x\sin x=x^2-\frac{x^4}{6}+\frac{x^6}{120}-\frac{x^8}{5040}+\dot\cdots \end{equation} Then I try to... \begin{equation} (2x^2-2x^4+\frac{4x^6}{2}-\frac{2x^8}{3}+\cdots)=(ax+bx^2+cx^4+dx^6+\cdots)(x^2-\frac{x^4}{6}+\frac{x^6}{120}-\frac{x^8}{5040}+\cdots) \end{equation}
and to find $a,\,b,\,c,\,d$. Now I don't get any further.