Let $G$ be a group. For $c \in G$ a fixed element let us define a new operation in $G$ defined by $a*b=a\cdot c \cdot b$
Prove that the funtion $f: (G, \cdot)\longrightarrow (G, *) $ given by $f(x)=c^{-1} \cdot x$ is an isomorphism
my attempt:
$f(x)=c^{-1}x $ $f(y)=c^{-1}y $
$f(x)= f(y): c^{-1}x = c^{-1}y \Longrightarrow{x=y} $
How do I test for surjectivity and morphism?
Thanks