1

Consider $C[0,1]$ as a Banach space with $\lVert f \rVert_\infty = \max_{t \in [0,1]} |f(x)|$, and define $T \in B(C[0,1])$ by $Tf(t) = \int_0^t f(s) ds$

1- Show that $T^n f(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f(s) ds$ for $n \in \mathbb{N}$.

2- Determine $\sigma(T)$. Hint: $r(T) = \underset{n \to \infty}\lim {\lVert T^n \rVert^{\frac{1}{n}}}$.

Edited: I solved the first part using the hints. Thank you so much. However, the second part is totally unclear for me, any hints please.

Mr. Proof
  • 1,477

1 Answers1

1

Using the hints mentioned above, let start by applying the operator many times to see the result.

\begin{align} T(f(t)) &= \int_0^t f(s) ds\\ T (T(f(t)))=T^2 (f(t) &= \int_0^t \left( \int_0^\tau f(\tau) d\tau \right)ds\\ &= \int_0^t \int_0^\tau f(\tau) d\tau ds \\ &= \int_0^t \int_\tau^t f(\tau) ds d\tau\\ &= \int_0^t \left( \int_\tau^t ds \right) f(\tau) d\tau\\ &= \int_0^t f(\tau) (t -\tau) d\tau \end{align}

So we can see that;

$$T^2 f(t)=\int_0^t f(s) (t -s) ds.$$ Applying the operator more times we get; $$T^3 f(t)= \frac{1}{2}\int_0^t f(s) (t -s)^2 ds.$$ and $$T^4 f(t)= \frac{1}{2 . 3}\int_0^t f(s) (t -s)^3 ds.$$

To prove the relation for all $n\in \mathbb{N}$ we use induction. Since the relation holds when $n=1$ we assume it holds when $n=k \in \mathbb{N}$,

$$T^k f(t)= \frac{1}{(k-1)!}\int_0^t f(s) (t -s)^{(k-1)} ds.$$

Now we apply by the operator one more time, \begin{align} T(T^k f(t)) =& \int_0^t \left( \frac{1}{(k-1)!}\int_0^s f(\tau) (s -\tau)^{(k-1)} d\tau \right) ds\\ T^{k+1} f(t) =& \frac{1}{(k-1)!} \int_0^t \int_0^s f(\tau) (s -\tau)^{(k-1)} d\tau ds\\ =& \frac{1}{(k-1)!} \int_0^t \int_\tau^t f(\tau) (s -\tau)^{(k-1)} ds d\tau\\ =& \frac{1}{(k-1)!} \int_0^t \left( \int_\tau^t ds \right) f(\tau) (s -\tau)^{(k-1)} d\tau\\ =& \frac{1}{k!} \int_0^t f(\tau) (s -\tau)^{k} d\tau.\\ \end{align}

So the relation $$T^n f(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f(s) ds$$ is right for all $n \in \mathbb{N}$.

Mr. Proof
  • 1,477