This integral may be evaluated using residue theory. Consider the integral
$$\oint_C \frac{dz}{(1+z^2) \cosh{a z}}$$
where $C$ is a semicircle of radius $R$ in the upper half plane. As $R \to \infty$, the integral about the semicircle vanishes, and we are left with the original integral equaling $i 2 \pi$ time the sum of the residues of the poles of the integrand within $C$. In this case, the poles within $C$ lie at $z_n = i (n+1/2) \pi/a$ for all $n \in \mathbb{N} \cup \{0\}$, and at $z_+ = i$. Evaluating the residues at these poles (which may be accomplished when the integrand is of the form $p(z)/q(z)$ using the formula $p(z_0)/q'(z_0)$ for a pole at $z=z_0$), we find that
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2) \cosh{a x}} = \frac{\pi}{\cos{a}} - \frac{2 \pi}{a} \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1/2)^2 \pi^2/a^2 - 1}$$
The sum unfortunately takes the form of a pair of Lerch transcendents
$$\begin{align}\frac{2 \pi}{a} \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1/2)^2 \pi^2/a^2 - 1} &= \frac{\pi}{a} \sum_{n=0}^{\infty} (-1)^n \left (\frac{1}{(n+1/2)\pi/a-1}-\frac{1}{(n+1/2)\pi/a+1} \right)\\&= \sum_{n=0}^{\infty} (-1)^n \left (\frac{1}{n+\frac12-\frac{a}{\pi}}-\frac{1}{n+\frac12+\frac{a}{\pi}} \right) \\ &= \Phi\left(-1,1,\frac12-\frac{a}{\pi}\right)-\Phi\left(-1,1,\frac12+\frac{a}{\pi}\right)\end{align}$$
Therefore
$$\int_0^{\infty} \frac{dx}{(1+x^2) \cosh{a x}} = \frac{\pi}{2\cos{a}} - \frac12 \left[\Phi\left(-1,1,\frac12-\frac{a}{\pi}\right)-\Phi\left(-1,1,\frac12+\frac{a}{\pi}\right) \right ]$$
It should be noted that $a \ne (k+1/2) \pi$ for some $k \in \mathbb{Z}$.
ADDENDUM
I should note that, in response to @GrahamHesketh's query, the result above may be shown to be equal to a difference between two digamma functions as follows:
$$\int_0^{\infty} \frac{dx}{(1+x^2) \cosh{a x}} = \frac12 \left [ \psi\left(\frac{3}{4}+\frac{a}{2 \pi} \right)-\psi\left(\frac{1}{4}+\frac{a}{2 \pi} \right) \right ]$$
This may be accomplished by noting that
$$\frac{\pi}{\cos{a}} = \sum_{n=-\infty}^{\infty} (-1)^n \frac{1}{n+\frac12-\frac{a}{\pi}} = \sum_{n=0}^{\infty} (-1)^n \left (\frac{1}{n+\frac12-\frac{a}{\pi}}+\frac{1}{n+\frac12+\frac{a}{\pi}} \right) $$
$$\psi\left(\frac{1}{4}+\frac{a}{2 \pi} \right) = \sum_{n=0}^{\infty}\left (\frac{1}{n+1}- \frac{1}{n+\frac12 \left (\frac12+\frac{a}{\pi}\right)}\right )$$
$$\psi\left(\frac{3}{4}+\frac{a}{2 \pi} \right) = \sum_{n=0}^{\infty} \left ( \frac{1}{n+1}-\frac{1}{n+1-\frac12 \left (\frac12-\frac{a}{\pi}\right)}\right )$$
To establish equality, note that the result I posted above boils down to
$$\frac{\pi}{\cos{a}} - \sum_{n=0}^{\infty} (-1)^n \left (\frac{1}{n+\frac12-\frac{a}{\pi}}-\frac{1}{n+\frac12+\frac{a}{\pi}} \right) = 2 \sum_{n=0}^{\infty} \frac{(-1)^n}{n+\frac12+\frac{a}{\pi}}$$
Equality between the above sum and the difference between the two $\psi$ terms is established by comparing the summands term by term.