Asked
Active
Viewed 46 times
0
-
The proof looks ok to me – Alessandro Apr 18 '21 at 20:07
-
You can use Mathjax: https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference – Oussema Apr 18 '21 at 23:37
1 Answers
0
Here is a proof with Taylor expansion for $|\ln(1-x)| > |\ln(1+x)|$ given $0<x<1$:
\begin{align}\ln(1-x)=-\sum_{n=1}^{\infty}\frac{x^{n}}{n}, \ln(1+x)=-\sum_{n=1}^{\infty} (-1)^{n}\frac{x^n}{n}\end{align}
\begin{align}|\ln(1+x)|=|\sum_{n=1}^{\infty} (-1)^{n}\frac{x^n}{n}|<\sum_{n=1}^{\infty} |\frac{x^n}{n}|=|\sum_{n=1}^{\infty}\frac{x^n}{n}|\end{align}
\begin{align}|\frac{\ln(1-x)}{\ln(1+x)}|=\frac{|-\sum_{n=1}^{\infty}\frac{x^{n}}{n}|}{|\sum_{n=1}^{\infty} (-1)^{n}\frac{x^n}{n}|}>\frac{|\sum_{n=1}^{\infty}\frac{x^{n}}{n}|}{|\sum_{n=1}^{\infty} \frac{x^n}{n}|}=1\end{align}\begin{align} |\ln(1-x)| > |\ln(1+x)|\end{align}

Star Bright
- 2,338