Let $X_1,..,X_n$ be a random sample from a Poisson population with parameter $\lambda$ and define $Y=\Sigma X_i$. Y is sufficient for $\lambda$ and $Y \sim Poisson(n\lambda)$. Now $Y=y_0$ is observed, one equation is
$$\Sigma_{k=0}^{y_0} e^{-n\lambda} \frac{(n\lambda)^k}{k!}=\frac{\alpha}{2}$$
Recall the identity linking the Poisson and gamma families: If X is a gamma($\alpha, \beta$) random variable, where $\alpha$ is an integer, then for any x, P(X $\le$x)=P(Y$\ge \alpha$), where $Y \sim Poisson(x/\beta)$.
We can write (remembering that $y_0$ is the observed value of Y): $$\frac{\alpha}{2}=\Sigma_{k=0}^{y_0} e^{-n\lambda} \frac{(n\lambda)^k}{k!}= P(Y \le y_0|\lambda)= P(\chi^2_{2(y_0+1)}>2n\lambda)$$.
I didn't get the above equality. My attempt is: $$\frac{\alpha}{2}=\Sigma_{k=0}^{y_0} e^{-n\lambda} \frac{(n\lambda)^k}{k!}= P(Y \le y_0|\lambda)=1-P(Y \ge y_0+1|\lambda)= 1-P(X \le x) =P(X>x)$$, where x is gamma($y_0+1,\frac{x}{n\lambda}$). Because I think $x/\beta = n\lambda$. I don't know how to do next. And I don't know my attempt is correct or not.
I also know the identity that $\chi^2_v=gamma(v/2,2)$
Background of this question: