\begin{align*}
Likelihood(X_i|\vartheta) &= \begin{cases}\mathbb P(X=x_i | \vartheta)&if\, x_i<\vartheta\\0& otherwise\end{cases}\\
&= \begin{cases}\frac{3x_i^2}{\vartheta^3}&if\, x_i<\vartheta\\0& otherwise\end{cases}\\
\end{align*}
Assume $\vartheta \geq max(\{x_1,\dots,x_4\})$ as we want to maximize likelihood and don't want the probabilities therefore to be 0.
Now we calculate the total likelihood.
\begin{align*}
Likelihood(\{X_1,\dots,X_4\}|\vartheta) &= \sum\limits_{i=1}^4 \mathbb P(X=x_i | \vartheta)\\
&=\frac{3\left(\sum\limits_{i=1}^4 x_i^2\right)}{\vartheta^3}
\end{align*}
For maximizing likelihood, we set the derivative equal to 0 (to check for maxima of the function)
\begin{align*}
Likelihood(X_i|\vartheta^*) &= 0\\
-3\frac{3\left(\sum\limits_{i=1}^4 x_i^2\right)}{\vartheta^4}=0
\end{align*}
But clearly the likelihood is always decreasing with increasing $\vartheta$ as the derivative is always negative (for $\vartheta \geq max(\{x_1,\dots,x_4\})$). Therefore we set it to the lowest possibile value where all the probabilities are positive.
$$\vartheta = max(\{x_1,\dots,x_4\}) = 1.755$$