It seems to me that Lang omitted an important assumption needed for the lemma, which is that $X$ and $Y$ must be countable unions of sets in $\mathcal{A}$ and $\mathcal{B}$ respectively. In particular it holds if $\mathcal{A}$ and $\mathcal{B}$ are algebras of subsets in $X$ and $Y$ respectively.
To see why this assumption is necessary consider an example where $X\neq \emptyset \neq Y$ and $B\subset Y$ with $\emptyset\neq B\neq Y$. Let $\mathcal{A}=\{\emptyset\}$ and $\mathcal{B}=\{\emptyset,B,Y\setminus B,Y\}$. Then $\mathcal{A}$ and $\mathcal{B}$ are rings of subsets in $X$ and $Y$ respectively. We have $\mathcal{A}\times \mathcal{B}=\{\emptyset\}$ and so $(\mathcal{A}\times \mathcal{B})^{\sigma }=\{\emptyset,X\times Y\}$. Other the other hand we have $\mathcal{A}^{\sigma}\times\mathcal{B}^{\sigma}=\{\emptyset,X\}\times \{\emptyset,B,Y\setminus B,Y\}$. It follows that $X\times B\in \mathcal{A}^{\sigma}\times\mathcal{B}^{\sigma}\subset \mathcal{A}^\sigma\otimes \mathcal{B}^\sigma$ but $X\times B\notin (\mathcal{A}\times \mathcal{B})^{\sigma }$ so the lemma dosen't hold.
To see why the assumption is also sufficient lets rewrite the proof in details. Since $\mathcal{A}\times \mathcal{B}\subset \mathcal{A}^\sigma\times \mathcal{B}^\sigma \subset \mathcal{A}^\sigma\otimes \mathcal{B}^\sigma$ it follows that $(\mathcal{A}\times \mathcal{B})^{\sigma}\subset \mathcal{A}^\sigma\otimes \mathcal{B}^\sigma$ and we must show the reverse inclusion.
For each $B\in\mathcal{B}$ consider the $\sigma$-algebra $\Sigma_B$ in $X\times B$ generated by all sets $A\times B$ with $A\in\mathcal{A}$. One checks that we have $\Sigma_B=\{A\times B:A\in \mathcal{A}^{\sigma}\}$. By assumption there exist a sequence $(A_n)\subset \mathcal{A}$ with $X=\cup_{n}A_n$ which implies $X\times B=\cup_n (A_n\times B) \in (\mathcal{A}\times \mathcal{B})^{\sigma}$. It follows that $(\mathcal{A}\times \mathcal{B})^{\sigma}\restriction_{X\times B} \subset (\mathcal{A}\times \mathcal{B})^{\sigma}$, where $(\mathcal{A}\times \mathcal{B})^{\sigma}\restriction_{X\times B}$ denotes the trace of $(\mathcal{A}\times \mathcal{B})^{\sigma}$ on $X\times B$. Moreover, $(\mathcal{A}\times \mathcal{B})^{\sigma}\restriction_{X\times B}$ is a $\sigma$-algebra in $X\times B$ containing all sets $A\times B$ with $A\in\mathcal{A}$ since $A\times B=(A\times B)\cap (X\times B)$ with $A\times B\in (\mathcal{A}\times \mathcal{B})^{\sigma}$. It follows that $\Sigma_B\subset (\mathcal{A}\times \mathcal{B})^{\sigma}\restriction_{X\times B} \subset (\mathcal{A}\times \mathcal{B})^{\sigma}$ for all $B\in \mathcal{B}$. This implies $\mathcal{A}^{\sigma}\times\{B\} \subset (\mathcal{A}\times \mathcal{B})^{\sigma}$ for all $B\in \mathcal{B}$.
For each $A\in \mathcal{A}^{\sigma}$ consider the $\sigma$-algebra $\Sigma_A$ in $A\times Y$ generated by all sets $A\times B$ with $B\in\mathcal{B}$. One checks that we have $\Sigma_A=\{A\times B:B\in \mathcal{B}^{\sigma}\}$. By assumption there exist a sequence $(B_n)\subset \mathcal{B}$ with $Y=\cup_{n}B_n$ which implies $A\times Y=\cup_n (A\times B_n) \in (\mathcal{A}\times \mathcal{B})^{\sigma}$ since $A\times B_n\in \mathcal{A}^{\sigma}\times\{B_n\}$ for each $n$. It follows that $(\mathcal{A}\times \mathcal{B})^{\sigma}\restriction_{A\times Y} \subset (\mathcal{A}\times \mathcal{B})^{\sigma}$. Moreover, $(\mathcal{A}\times \mathcal{B})^{\sigma}\restriction_{A\times Y} $ is a $\sigma$-algebra in $A\times Y$ which contains all sets $A\times B$ with $B\in\mathcal{B}$, since $A\times B=(A\times B)\cap (A\times Y)$ with $A\times B\in \mathcal{A}^{\sigma}\times\{B\} \subset (\mathcal{A}\times \mathcal{B})^{\sigma}$. It follows that $\Sigma_A\subset (\mathcal{A}\times \mathcal{B})^{\sigma}\restriction_{A\times Y} \subset (\mathcal{A}\times \mathcal{B})^{\sigma}$ for all $A\in \mathcal{A}^{\sigma}$. This implies $A\times B \in (\mathcal{A}\times \mathcal{B})^{\sigma}$ for all $A\in \mathcal{A}^{\sigma}$ and $B\in \mathcal{B}^{\sigma}$ and whence $\mathcal{A}^{\sigma}\times \mathcal{B}^{\sigma}\subset (\mathcal{A}\times \mathcal{B})^{\sigma}$. We conclude that $\mathcal{A}^\sigma\otimes \mathcal{B}^\sigma\subset(\mathcal{A}\times \mathcal{B})^{\sigma}$.