If dominated convergence is what you want, you may want to use the following well known result: $\lim_n\frac{n^p}{(1+q)^n}=0$ for all $p\in\mathbb{R}$ and $q>0$.
To apply dominated convergence then, it is enough to find an appropriate dominating function, for
$$f_n(x)=\frac{1+nx}{(1+x)^n}=\frac{1-n}{(x+1)^n}+\frac{n}{(1+x)^{n-1}}\xrightarrow{n\rightarrow\infty}0\qquad \text{if} \quad x\neq0,$$
that is, $f_n(x)\xrightarrow{n\rightarrow\infty}0$ a.s. in $(0,1]$.
The binomial theorem is handy here: for $n>2$,
$$(1+x)^n\geq 1+\binom{n}{1}x=1+nx$$
Hence $$ |f_n(x)|\leq1$$ and $\int^1_0\,dx=1<\infty$. Consequently $\lim_n\int^1_0f_n(x)\,dx=0$.
Notice also that limit of $\int^1_0f_n(x)\,dx$ of the sequence of functions in your problem can be estimated directly:
\begin{align}
\int^1_0\frac{1+nx}{(1+x)^n}\,dx&=\int^1_0\frac{dx}{(1+x)^n}+ n\int^1_0\frac{x+1-1}{(x+1)^n}\,dx\\
&=(1-n)\frac{(1+x)^{-n+1}}{-n+1}\Big|^1_0 +n\frac{(x+1)^{-n+2}}{-n+2}\Big|^1_0\\
&=-(2^{-n+1}-1)-\frac{n}{n-2}\big( 2^{-n+2}-1)\\
&=1-\frac{n}{n-2}-2^{-n+1}-\frac{n}{n-1}2^{-n+2}\xrightarrow{n\rightarrow\infty}0
\end{align}
This is one instance in which dominated convergence gives a cleaner answer (once the dominating function and the convergence of the integrands $f_n$ have been established.)