In this post, @reuns worked this out from the left hand side:
$$ \log{1\over s-1}=s\int_1^\infty\operatorname{li}(x)x^{-s-1}\mathrm dx $$
To reinforce my understanding, I tried attacking it from the right (where it is assumed that $\Re(s)>1$):
$$ \begin{aligned} s\int_1^\infty\operatorname{li}(x)x^{-s-1}\mathrm dx &=\int_1^\infty\operatorname{li}(x)\mathrm d(x^{-s}-1) \\ &=\operatorname{li}(x)(x^{-s}-1)|_1^\infty-\int_1^\infty{x^{-s}-1\over\log x}\mathrm dx \\ \end{aligned} $$
I currently have no knowledge about the growth of $\operatorname{li}(x)$ near $x=1$, so I jump to work on the second integral:
$$ \begin{aligned} -\int_1^\infty{x^{-s}-1\over\log x}\mathrm dx &=-\int_1^\infty\int_0^{-s}x^r\mathrm dr\mathrm dx \\ &=\int_{-s}^0\int_1^\infty x^r\mathrm dr\mathrm dx \\ &=\int_{-s}^0\left[x^{r+1}\over r+1\right]_0^\infty\mathrm dr \end{aligned} $$
I do not think I can continue from here because of convergence problem. I wonder whether it is possible to proceed here, or if it is possible with modifications on previous steps.