Otherwise.. without Polygamma function..
Lemma 1: $$\displaystyle{g\left( x \right) = \sum\limits_{n = 1}^\infty {\frac{{{{\left( {n!} \right)}^2}}}{{\left( {2n} \right)!}}{x^n}} = \frac{{z\sqrt {4 - z} + 4 \cdot \sqrt z \cdot \arcsin \left( {\frac{{\sqrt z }}{2}} \right)}}{{\left( {4 - z} \right)\sqrt {4 - z} }}}$$ .. It follows elementarily from the series $$\displaystyle{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}{{\left( {n!} \right)}^2}{z^{2n + 2}}}}{{\left( {n + 1} \right)\left( {2n + 1} \right)!}}} = {\arcsin ^2}z}$$
https://en.wikipedia.org/wiki/List_of_m ... cal_series with two productions, namely:.
$$\displaystyle{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}{{\left( {n!} \right)}^2}{z^{2n + 2}}}}{{\left( {n + 1} \right)\left( {2n + 1} \right)!}}} = {\arcsin ^2}z \Rightarrow \sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}{{\left( {n!} \right)}^2}{z^{2n + 1}}}}{{\left( {2n + 1} \right)!}}} }$$
$$\displaystyle{ = \frac{{\arcsin z}}{{\sqrt {1 - {z^2}} }} \Rightarrow \sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}{{\left( {n!} \right)}^2}\left( {2n + 1} \right){z^{2n}}}}{{\left( {2n + 1} \right)!}}} = }$$
$$\displaystyle{\frac{1}{{1 - {z^2}}} + \frac{{z \cdot \arcsin \left( z \right)}}{{\left( {1 - {z^2}} \right)\sqrt {1 - {z^2}} }} \Rightarrow \sum\limits_{n = 0}^\infty {\frac{{{{\left( {n!} \right)}^2}{{\left( {2z} \right)}^{2n}}}}{{\left( {2n} \right)!}}} = }$$ $$\displaystyle{\frac{1}{{1 - {z^2}}} + \frac{{z \cdot \arcsin \left( z \right)}}{{\left( {1 - {z^2}} \right)\sqrt {1 - {z^2}} }} \Rightarrow \sum\limits_{n = 0}^\infty {\frac{{{{\left( {n!} \right)}^2}{z^{2n}}}}{{\left( {2n} \right)!}}} = }$$
$$\displaystyle{ = \frac{4}{{4 - {z^2}}} + \frac{{4 \cdot z \cdot \arcsin \left( {\frac{z}{2}} \right)}}{{\left( {4 - {z^2}} \right)\sqrt {4 - {z^2}} }}} and finally \displaystyle{\sum\limits_{n = 1}^\infty {\frac{{{{\left( {n!} \right)}^2}{z^n}}}{{\left( {2n} \right)!}}} = \frac{{z\sqrt {4 - z} + 4 \cdot \sqrt z \cdot \arcsin \left( {\frac{{\sqrt z }}{2}} \right)}}{{\left( {4 - z} \right)\sqrt {4 - z} }}}$$
Lemma 2: $$\displaystyle{\log \left( {\cos y} \right) = - \log 2 - \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}\cos \left( {2ny} \right)}}{n}} } .$$ Derived from the series $$\displaystyle{ - \frac{1}{2}\log \left( {2 - 2\cos z} \right) = \sum\limits_{n = 1}^\infty {\frac{{\cos \left( {n \cdot z} \right)}}{n}} } $$
https://en.wikipedia.org/wiki/List_of_m ... cal_series
On to our topic..
Let $$\displaystyle{{a_n} = \frac{{{H_n}}}{{\left( {\begin{array}{*{20}{c}}
{2n}\\
n
\end{array}} \right)}} = \frac{{{{\left( {n!} \right)}^2}}}{{\left( {2n} \right)!}}{H_n}} . We consider the function \displaystyle{f\left( x \right) = \sum\limits_{n = 1}^\infty {{a_n}{x^n}} } with \displaystyle{\left| x \right| \le 1} . Then \displaystyle{S = \sum\limits_{n = 1}^\infty {\frac{{{H_n}}}{{\left( {\begin{array}{*{20}{c}}
{2n}\\
n
\end{array}} \right)}}} = f\left( 1 \right)}.$$
However $$\displaystyle{{a_{n + 1}} = \frac{{\left( {n + 1} \right) \cdot {{\left( {n!} \right)}^2}}}{{2 \cdot \left( {2n + 1} \right) \cdot \left( {2n} \right)!}}\left( {{H_n} + \frac{1}{{n + 1}}} \right) = \frac{{\left( {n + 1} \right) \cdot {{\left( {n!} \right)}^2}}}{{2 \cdot \left( {2n + 1} \right) \cdot \left( {2n} \right)!}}{H_n} + \frac{{{{\left( {n!} \right)}^2}}}{{2 \cdot \left( {2n + 1} \right) \cdot \left( {2n} \right)!}}}$$
Ultimately $$\displaystyle{2 \cdot \left( {2n + 1} \right){a_{n + 1}} = \left( {n + 1} \right) \cdot {a_n} + \frac{{{{\left( {n!} \right)}^2}}}{{\left( {2n} \right)!}} \Rightarrow 4\left( {n + 1} \right) \cdot {a_{n + 1}} - 2{a_{n + 1}} = n \cdot {a_n} + {a_n} + \frac{{{{\left( {n!} \right)}^2}}}{{\left( {2n} \right)!}}}$$, therefore:
$$\displaystyle{4 \cdot \sum\limits_{n = 1}^\infty {\left( {n + 1} \right) \cdot {a_{n + 1}}{x^n}} - 2\sum\limits_{n = 1}^\infty {{a_{n + 1}}{x^n}} = \sum\limits_{n = 1}^\infty {n \cdot {a_n}{x^n}} }$$ $$\displaystyle{ + \sum\limits_{n = 1}^\infty {{a_n}{x^n}} + \sum\limits_{n = 1}^\infty {\frac{{{{\left( {n!} \right)}^2}}}{{\left( {2n} \right)!}}{x^n}} \Rightarrow 4 \cdot \sum\limits_{n = 2}^\infty {n \cdot {a_n}{x^{n - 1}}} - \frac{2}{x}\sum\limits_{n = 2}^\infty {{a_n}{x^n}} = }$$
$$\displaystyle{ = x\sum\limits_{n = 1}^\infty {n \cdot {a_n}{x^{n - 1}}} + \sum\limits_{n = 1}^\infty {{a_n}{x^n}} + g\left( x \right) \Rightarrow 4 \cdot {\left( {f\left( x \right) - {a_1} \cdot x} \right){'}}}$$
$$\displaystyle{ - \frac{2}{x}\left( {f\left( x \right) - {a_1} \cdot x} \right) = x \cdot f'\left( x \right) + f\left( x \right) + g\left( x \right) \Rightarrow }$$
$$\displaystyle{ \Rightarrow 4 \cdot \left( {f'\left( x \right) - \frac{1}{2}} \right) - \frac{2}{x}\left( {f\left( x \right) - \frac{x}{2}} \right) = x \cdot f'\left( x \right) + f\left( x \right) + g\left( x \right)} \displaystyle{ \Rightarrow f'\left( x \right) + \frac{{2 + x}}{{x\left( {x - 4} \right)}}f\left( x \right) = \frac{1}{{4 - x}}\left( {1 + g\left( x \right)} \right)}$$
With a classical procedure for solving first-order differential equations and given that $\displaystyle{f\left( 0 \right) = 0}$ we find
$$\displaystyle{f'\left( x \right) + \left( { - \frac{1}{2} \cdot \frac{1}{x} - \frac{3}{2} \cdot \frac{1}{{4 - x}}} \right)f\left( x \right) = \frac{1}{{4 - x}}\left( {1 + g\left( x \right)} \right)}$$
$$\displaystyle{ \Rightarrow {\left( {\frac{{\left( {4 - x} \right)\sqrt {4 - x} }}{{\sqrt x }}f\left( x \right)} \right){'}} = \frac{{\sqrt {4 - x} }}{{\sqrt x }}\left( {1 + g\left( x \right)} \right) \Rightarrow }$$
$$\displaystyle{ \Rightarrow \int\limits_0^1 {{{\left( {\frac{{\left( {4 - x} \right)\sqrt {4 - x} }}{{\sqrt x }}f\left( x \right)} \right)}{'}}} dx = \int\limits_0^1 {\frac{{\sqrt {4 - x} }}{{\sqrt x }}\left( {1 + g\left( x \right)} \right)dx} \Rightarrow }$$ $$\displaystyle{\left[ {\frac{{\left( {4 - x} \right)\sqrt {4 - x} }}{{\sqrt x }}f\left( x \right)} \right]_0^1 = \int\limits_0^1 {\frac{{\sqrt {4 - x} }}{{\sqrt x }}dx} + \int\limits_0^1 {\frac{{\sqrt {4 - x} }}{{\sqrt x }}g\left( x \right)dx} \Rightarrow }$$
$$\displaystyle{ \Rightarrow 3\sqrt 3 \cdot f\left( 1 \right) = \sqrt 3 + \frac{{2\pi }}{3} + \int\limits_0^1 {\left( {\frac{{\sqrt x \cdot \sqrt {4 - x} + 4 \cdot \arcsin \left( {\frac{{\sqrt x }}{2}} \right)}}{{\left( {4 - x} \right)}}} \right)dx} }$$
$$\displaystyle{ = \sqrt 3 + \frac{{2\pi }}{3} + \int\limits_0^1 {\left( {\frac{{\sqrt x }}{{\sqrt {4 - x} }}} \right)dx} + \;4 \cdot \int\limits_0^1 {\left( {\frac{{\arcsin \left( {\frac{{\sqrt x }}{2}} \right)}}{{\left( {4 - x} \right)}}} \right)dx} }$$
Then $$\displaystyle{f\left( 1 \right) = \frac{{4\pi }}{{9\sqrt 3 }} + \frac{4}{{3\sqrt 3 }} \cdot \int\limits_0^1 {\left( {\frac{{\arcsin \left( {\frac{{\sqrt x }}{2}} \right)}}{{\left( {4 - x} \right)}}} \right)dx} \mathop { = = = }\limits^{\sqrt x = w} \frac{{4\pi }}{{9\sqrt 3 }} + \frac{8}{{3\sqrt 3 }} \cdot \int\limits_0^1 {\left( {\frac{{w \cdot \arcsin \left( {\frac{w}{2}} \right)}}{{\left( {4 - {w^2}} \right)}}} \right)dw} \mathop { = = = }\limits^{w = 2y} \frac{{4\pi }}{{9\sqrt 3 }} + }$$
$$\displaystyle{ + \frac{8}{{3\sqrt 3 }} \cdot \int\limits_0^{1/2} {\frac{{y \cdot \arcsin \left( y \right)}}{{1 - {y^2}}}dy} \mathop { = = = }\limits^{y = \sin z} \frac{{4\pi }}{{9\sqrt 3 }} + }$$
$$\displaystyle{\frac{8}{{3\sqrt 3 }} \cdot \int\limits_0^{\pi /6} {\frac{{z \cdot \sin z}}{{\cos z}}dz} = \frac{{4\pi }}{{9\sqrt 3 }} - \frac{8}{{3\sqrt 3 }} \cdot \int\limits_0^{\pi /6} {z\left( {\log \left( {\cos z} \right)} \right)'dz} = }$$
$$\displaystyle{ = \frac{{4\pi }}{{9\sqrt 3 }} - \frac{8}{{3\sqrt 3 }} \cdot \left( {\left[ {z\log \left( {\cos z} \right)} \right]_0^{\pi /6} - \int\limits_0^{\pi /6} {\log \left( {\cos z} \right)dz} } \right)}$$
$$\displaystyle{ = \frac{{2\pi \left( {2 - \log 3 + 2\log 2} \right)}}{{9\sqrt 3 }} + \frac{8}{{3\sqrt 3 }} \cdot \int\limits_0^{\pi /6} {\log \left( {\cos z} \right)dz} = }$$
$$\displaystyle{ = \frac{{2\pi \left( {2 - \log 3 + 2\log 2} \right)}}{{9\sqrt 3 }} - \frac{8}{{3\sqrt 3 }} \cdot \int\limits_0^{\pi /6} {\left( {\log 2 + \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}\cos \left( {2nz} \right)}}{n}} } \right)dz} }$$ $$\displaystyle{ = \frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} - \frac{8}{{3\sqrt 3 }} \cdot \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{n}\int\limits_0^{\pi /6} {\cos \left( {2nz} \right)dz} } = }$$
$$\displaystyle{ = \frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} - \frac{8}{{3\sqrt 3 }} \cdot \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{n}\int\limits_0^{\pi /6} {\cos \left( {2nz} \right)dz} } = }$$
$$\displaystyle{\frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} - \frac{8}{{3\sqrt 3 }} \cdot \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}\sin \left( {\frac{{2n\pi }}{6}} \right)}}{{2{n^2}}}} = }$$
$$\displaystyle{ = \frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} - \frac{4}{{3\sqrt 3 }} \cdot \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}\sin \left( {\frac{{n\pi }}{3}} \right)}}{{{n^2}}}} = }$$ $$\displaystyle{\frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} - \frac{4}{{3\sqrt 3 }} \cdot \sum\limits_{n = 1}^\infty {\frac{{\sin \left( {n\pi + \frac{{n\pi }}{3}} \right)}}{{{n^2}}}} = }$$
$$\displaystyle{ = \frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} + \frac{{2 \cdot i}}{{3\sqrt 3 }}\left( {L{i_2}\left( {{e^{i\frac{{4\pi }}{3}}}} \right) - L{i_2}\left( {{e^{ - i\frac{{4\pi }}{3}}}} \right)} \right) = }$$
$$\displaystyle{\frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} + \frac{{2 \cdot i}}{{3\sqrt 3 }}\left( {L{i_2}\left( { - \frac{{1 + i\sqrt 3 }}{2}} \right) - L{i_2}\left( { - \frac{{1 - i\sqrt 3 }}{2}} \right)} \right)}$$
Eventually $$\displaystyle{S = \sum\limits_{n = 1}^\infty {\frac{{{H_n}}}{{\left( {\begin{array}{*{20}{c}}
{2n}\\
n
\end{array}} \right)}}} = \frac{{2\pi \left( {2 - \log 3} \right)}}{{9\sqrt 3 }} - \frac{4}{{3\sqrt 3 }}{\mathop{\rm Im}\nolimits} \left( {L{i_2}\left( { - \frac{{1 + i\sqrt 3 }}{2}} \right)} \right)}$$ :) :)
Note. 1) The result numerically is the same as the above solution of My !!
2) With the above method, of the function generator, the series $$\displaystyle{\sum\limits_{n = 1}^\infty {\frac{{{H_n}}}{{\left( {\begin{array}{*{20}{c}}
{2n}\\
n
\end{array}} \right)}} \cdot {a^n}} }$$ for various values of $\displaystyle{a}$ !! have fun ..