0

Let $\gamma_{R}:[0, \pi] \rightarrow \mathbb{C}$ s.t $\gamma_{R}(t)=Re^{it}$ $, \quad t\in [0, \pi]$ given that $$\lim _{R \rightarrow \infty} \max _{|z|=R}|f(z)|=0$$ show that for every $a>0$ $$ \lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{i a z} f(z) d z=0 $$ I was thinking on using the fact that $$|\int_{\gamma_{R}} e^{i a z} f(z) d z|\leq L_{\gamma R}\cdot max |e^{iaz}f(z)|$$ for every $z\in \gamma_{R}$ while $L_{\gamma R}= \frac{\pi R}{2}$

But I am not sure how I can use the given now because I have $R \cdot max |f(z)|$ this is like $$\infty \cdot 0$$

Sagigever
  • 1,428
  • Is this what you are looking for? https://math.stackexchange.com/q/568246/42969 – Martin R Apr 11 '21 at 17:10
  • @MartinR can you explain why $\sin\varphi \geqslant \frac{2}{\pi}\varphi$ for $0 \leqslant \varphi \leqslant \pi/2$ plz? – Sagigever Apr 11 '21 at 18:59
  • https://math.stackexchange.com/q/213382/42969, https://math.stackexchange.com/q/596634/42969. – Martin R Apr 11 '21 at 19:04
  • @MartinR I am trying to show now this integral limit is not zero if $f(z) = \frac{1}{z}$ with the same path. do you have any suggestion? – Sagigever Apr 11 '21 at 19:38

0 Answers0