I want to prove that the power set of $\mathbb R$, which can be naturally identified as $\{0,1\}^{\mathbb R}$, is bijective to the set $\mathbb R^{\mathbb R}$. Can the following attempt be altered to get a bijection without invoking Cantor-Schröder-Bernstein ?
Here is my attempt:
Notation. For any $f:\mathbb R\to\mathbb R$, let $\operatorname{graph}f\overset{\text{Def.}}=\{(x, f(x))\in\mathbb R^2: x\in\mathbb R\}$. Let $g:\mathbb R\to\mathbb R^2$ be a bijection.${}^1$${}^2$${}^3$
Now I define the operator
\begin{split}B:\mathbb R^{\mathbb R}&\to\{0,1\}^{\mathbb R}, \\ f&\mapsto B(f),\end{split}
where
\begin{split} B(f): \mathbb R&\to\{0,1\}, \\ r&\mapsto \begin{cases} 1&\text{if } g(r)\in\operatorname{graph} f\\ 0&\text{if } g(r)\not\in\operatorname{graph} f \end{cases} \end{split}
Now, $B$ is injective, because if $f_1, f_2:\mathbb R\to\mathbb R$ satisfy $B(f_1)=B(f_2)$, then, since $g$ is a bijection, for any $(y^1, y^2)\in\mathbb R$, we have $(y^1,y^2)\in\operatorname{graph} f_1\iff (y^1, y^2)\in\operatorname{graph} f_2$, i.e. $f_1(y^1)=y^2\iff f_2(y^1)=y^2$ for any $(y^1,y^2)\in\mathbb R^2$, which means that $f_1=f_2$.
However, $B$ is sadly not surjective. Since the inclusion $\{0,1\}^{\mathbb R}\to\mathbb R^{\mathbb R}$ is trivially injective, Cantor-Schröder-Bernstein implies that the two sets are bijective.