You don't expect to see the $n^\text{th}$ partial sums starting to converge until the $n^\text{th}$ term starts to approach $0$.
Your example attempts to compute $e^{-10000}$ using only terms up to $n=111$. But $(-10000)^{111}$ is greater in magnitude than $111!$ by a large margin. So you won't be seeing anything like convergence yet.
For an instructive example, compute the individual terms in the expansion of $e^{-10}$. Here's a table
$$
\begin{array}{r|r||r|r}
n & \frac{(-10)^n}{n!} & n & \frac{(-10^n}{n!}\\
\hline
0 & 1.00000000000000 & 18 & 156.192069685862\\
1 & -10.0000000000000 & 19 & -82.2063524662433\\
2 & 50.0000000000000 & 20 & 41.1031762331217\\
3 & -166.666666666667 & 21 & -19.5729410633913\\
4 & 416.666666666667 & 22 & 8.89679139245057\\
5 & -833.333333333333 & 23 & -3.86817017063068\\
6 & 1388.88888888889 & 24 & 1.61173757109612\\
7 & -1984.12698412698 & 25 & -0.644695028438447\\
8 & 2480.15873015873 & 26 & 0.247959626322480\\
9 & -2755.73192239859 & 27 & -0.0918368986379555\\
10 & 2755.73192239859 & 28 & 0.0327988923706984\\
11 & -2505.21083854417 & 29 & -0.0113099628864477\\
12 & 2087.67569878681 & 30 & 0.00376998762881591\\
13 & -1605.90438368216 & 31 & -0.00121612504155352\\
14 & 1147.07455977297 & 32 & 0.000380039075485474\\
15 & -764.716373181982 & 33 & -0.000115163356207719\\
16 & 477.947733238739 & 34 & 0.000033871575355211\\
17 & -281.145725434552 & 35 & -0.00000967759295863189\\
\end{array}
$$
You can see that if you were to take only the first ten or so terms you would be seeing wild fluctuations in the partial sums, but that by the time you get to $n=35$ things are starting to settle down.
To figure out how many terms you need to take, you can use Stirling's approximation, $n!\sim\sqrt{2\pi n}\left(\frac{n}{e}\right)^n$. So for $\frac{a^n}{n!}$ to be small, you need $\frac{ae}{n}$ to be small.