Find the integral $$I=\int_0^\infty\int_0^{\infty}\frac{\sin x \sin y \sin (x+y)}{xy(x+y)}\,dx\,dy$$
My try: define $$I(b):=\int_0^\infty\int_0^{\infty}\frac{\sin x \sin y \sin (x+y)}{xy(x+y)}e^{-bxy(x+y)}\,dx\,dy$$ then $$I'(b)=-\int_0^\infty\int_0^{\infty}\sin x \sin y \sin (x+y) e^{-bxy(x+y)}\,dx\,dy$$
But I can't find $I(b)$.
Thank you