If $F(b)$ is the antiderivative of $\lfloor b\rfloor$, then
$$F(b)-F(0)=\int_0^b\lfloor x\rfloor dx$$
$$=\sum_{n=0}^{\lfloor b\rfloor-1}\int_n^{n+1}\lfloor x\rfloor dx+\int_{\lfloor b\rfloor}^b\lfloor x\rfloor dx$$
$$=\sum_{n=0}^{\lfloor b\rfloor-1}n+\int_{\lfloor b\rfloor}^b\lfloor b\rfloor dx$$
$$=\frac{\lfloor b\rfloor(\lfloor b\rfloor-1)}2+\lfloor b\rfloor(b-\lfloor b\rfloor)$$
$$=\frac{\lfloor b\rfloor(\lfloor b\rfloor-1)+2\lfloor b\rfloor(b-\lfloor b\rfloor)}2$$
$$=\frac{\lfloor b\rfloor(2b-\lfloor b\rfloor-1)}2$$
$$=\lfloor b\rfloor b-\frac{\lfloor b\rfloor(\lfloor b\rfloor+1)}2$$
If we define $F(0)=0$, then we have $F(b)=\lfloor b\rfloor b-\frac{\lfloor b\rfloor(\lfloor b\rfloor+1)}2$.
Similarly, if $F(b)$ is the antiderivative of $\lfloor b\rfloor^n$, then:
$$F(b)-F(0)=\int_0^b\lfloor x\rfloor^n dx$$
$$=\sum_{i=0}^{\lfloor b\rfloor-1}\int_i^{i+1}\lfloor x\rfloor^n dx+\int_{\lfloor b\rfloor}^b\lfloor x\rfloor^n dx$$
$$=\sum_{i=0}^{\lfloor b\rfloor-1}i^n+\int_{\lfloor b\rfloor}^b\lfloor b\rfloor^n dx$$
$$=\sum_{i=0}^{\lfloor b\rfloor-1}i^n+(b-\lfloor b\rfloor)\lfloor b\rfloor^n$$
Using robjob's Hockey-Stick Identity:
$$\newcommand{\stirtwo}[2]{\left\{#1\atop#2\right\}}$$
$$\sum_{i=0}^{\lfloor b\rfloor-1}i^n=\sum_{j=0}^n\binom{\lfloor b\rfloor}{j+1}\stirtwo{n}{j}j!$$
Where $\stirtwo{m}{j}$ are Stirling Numbers of the Second Kind.
Hence,
$$F(b)-F(0)=\sum_{j=0}^n\left[\binom{\lfloor b\rfloor}{j+1}\stirtwo{n}{j}j!\right]+(b-\lfloor b\rfloor)\lfloor b\rfloor^n$$
If $F(0)=0$, then
$$F(b)=\sum_{j=0}^n\left[\binom{\lfloor b\rfloor}{j+1}\stirtwo{n}{j}j!\right]+(b-\lfloor b\rfloor)\lfloor b\rfloor^n$$
Alternately, applying the more well-known but less compact Faulhaber's formula:
$$\sum_{i=0}^{\lfloor b\rfloor-1}i^n= \frac{(\lfloor b\rfloor-1)^{n+1}}{n+1}+\frac12(\lfloor b\rfloor-1)^n+\sum_{k=2}^n \frac{B_{k}}{k!}\frac{n!}{(n-k+1)!}(\lfloor b\rfloor-1)^{n-k+1}$$
Where $B_k$ is the $k$th Bernoulli number.
Hence,
$$F(b)-F(0)=\frac{(\lfloor b\rfloor-1)^{n+1}}{n+1}+\frac12(\lfloor b\rfloor-1)^n+\sum_{k=2}^n\left[\frac{B_{k}}{k!}\frac{n!}{(n-k+1)!}(\lfloor b\rfloor-1)^{n-k+1}\right]+(b-\lfloor b\rfloor)\lfloor b\rfloor^n$$
If we let $F(0)=0$, then
$$F(b)=\frac{(\lfloor b\rfloor-1)^{n+1}}{n+1}+\frac12(\lfloor b\rfloor-1)^n+\sum_{k=2}^n\left[\frac{B_{k}}{k!}\frac{n!}{(n-k+1)!}(\lfloor b\rfloor-1)^{n-k+1}\right]+(b-\lfloor b\rfloor)\lfloor b\rfloor^n$$