1.Let us consider the set $F[x]_{n,k}$ of all polynomials over $F$ of degree $n$ having preciesly $k$ irreducible factors. The question is: Fix some $n$. Let $p$ be a big prime number.How the cardinality of the sets $\mathbb F_p[x]_{n,k}, 1\leq k\leq n$ looks like? Is it true that $|\mathbb F_p[x]_{n,1}|>0.99\cdot \sum\limits_{k=1}^n |\mathbb F_p[x]_{n,k}|$ when $p$ is very big?
Can we compute the limit of $\dfrac{|\mathbb F_p[x]_{n,j}|}{ \sum\limits_{k=1}^n |\mathbb F_p[x]_{n,k}|}$ for fixed $j,n$ when $p\to +\infty$?