It's also given that $a_n$ has two different positive sub limits.
My try :
Given $\forall \varepsilon >0:n>N:N \in \mathbb{N} :|a_n a_{n+1}-1|<\frac{\varepsilon}{2}$
$ \Rightarrow \frac{1}{a_{n+1}}-\frac{\varepsilon}{2}\leq a_n\leq \frac{1}{a_{n+1}}+\frac{\varepsilon}{2}$ $Hence \ a_n \ is \ bounded$
We'll wrongfully assume $\lim \limits_{n \to \infty}a_n=\infty$ then $\lim \limits_{n \to \infty}a_{n+1}=0$ which would mean there's no Two Different Sublimits , Therefore $\lim \limits_{n \to \infty}a_n\neq\infty$
Hence because $\frac{1-{\frac{\varepsilon}{2}}}{a_{n+1}\geq 0 \neq\infty}\leq a_n\leq \frac{1+{\frac{\varepsilon}{2}}}{a_{n+1}\geq 0 \neq\infty}$ , for every $n \in \mathbb{N}$ we'll get a bounded $a_n$ :
$\frac{1}{q}-\frac{\varepsilon}{2} \leq a_n \leq \frac{1}{q}+\frac{\varepsilon}{2} $ ; $q \in \mathbb{R} $
According to bolzano weierstrass theorem , every bounded sequence has a sub-sequence that converge to final limit $L \in \mathbb{R}$ Therefore ,we'll build the sub sequence $a_{n_j}$ as :
$\frac{1}{q}-\frac{\varepsilon}{2} \leq a_{n_j} \leq \frac{1}{q}+\frac{\varepsilon}{2} $ ; $q \in \mathbb{R} $
therefore assuming $n\rightarrow \infty $ would result $q \in \mathbb{R}$
$ \Rightarrow \lim \limits_{n \to \infty}a_{n_j}=\frac{1}{q}<1$
- I know I should've mentioned that if $q \in [0,1]$ then the answer is direct from that
- I also know I should've probably wrote $q \in \mathbb{R} >0 $ , I didn't bother because the question is given where $a_n$ is positive