If $\int^x_0 f (t) dt =x+ \int^1_x t f (t) dt$, find value of $f(1)$
solution:-
$\int^x_0 f (t) dt =x+ \int^1_x t f (t) dt$
$\int^x_0 f (t) dt =x+ \int^0_x t f (t) dt$ + $\int^1_0 t f (t) dt$
$\int^x_0 f (t) dt =x- \int^x_0 t f (t) dt$ + $\int^1_0 t f (t) dt$
$\int^x_0 f (t) dt + \int^x_0 t f (t) dt$ =$x + $$\int^1_0 t f (t) dt$
I think, I am not in the right track
Help me to find the value of $f(1)$