-1

$$ \begin{cases} m=&a_1x+ b_1y \\ n =& a_2x + b_2y \end{cases} \qquad\text{and}\qquad a_1 b_2 - a_2 b_1 = 1 $$

I tried to substitute the value of $x$ in eq-1 to eq-2 and got $na_1+ma_2=y$

source: Challenges and Thrills Of Pre-College Mathematics (Exercise 2.2 Q-20)

Bill Dubuque
  • 272,048

1 Answers1

0

We have $(x,y)$ divides every linear combination of $x$ and $y$, so clearly $(x,y)$ divides $m$ and $n$. Then it divides $(m,n)$.

Now solve for $x$ and $y$ in terms of $n$ and $m$ and repeat the argument.

jjagmath
  • 18,214