Let:
$\displaystyle \tag*{} I(n,t) = \int \limits_{0}^{2 \pi} e^{t \cos \theta} \cos( n \theta - t\sin \theta) \mathrm{d \theta}$
$\displaystyle \tag*{} I(n,1) = \int \limits_{0}^{2 \pi} e^{ \cos \theta} \cos( n \theta - \sin \theta) \mathrm{d \theta}$
On differentiating both the sides, we have:
$\displaystyle \tag*{} I'(n,t) = \int \limits _{0}^{2 \pi} \dfrac{\partial( e^{t \cos \theta} \cos( n \theta - t\sin \theta))}{\partial t} \mathrm{d \theta}$
We have:
$\displaystyle \tag*{} \dfrac{\partial( e^{t \cos \theta} \cos( n \theta - t\sin \theta))}{\partial t} = e^{t \cos \theta} \left [(\cos (n \theta - t\sin \theta))(\cos \theta) + (\sin (n \theta - t \sin \theta))(\sin \theta)\right ]$
Using the basic trigonometric identity, which states,
$\displaystyle \tag*{} \cos (A-B) = \cos A \cos B + \sin A \sin B$
We obtain:
$\displaystyle \tag*{} \dfrac{\partial( e^{t \cos \theta} \cos( n \theta - t\sin \theta))}{\partial t} = e^{t \cos \theta} \cos ((n-1) \theta - t \sin \theta)$
Notice that:
$\displaystyle \tag{1} I'(n,t) = I(n-1,t)$
Now, let’s derive some useful solutions
$\displaystyle \tag{2} I(0,0) = \cos(0)\int \limits _{0}^{2 \pi} \mathrm{d \theta} = 2 \pi$
and
$\displaystyle \tag{3} I(n,0) = \int \limits _{0}^{2 \pi} \cos (n \theta) \mathrm{d \theta} = 0$
Now, note that:
$\displaystyle \tag*{} \int \limits _{0}^{t} I'(n,t) = \int \limits _{0}^{t} I(n-1,a) \mathrm{ da}$
$\displaystyle \tag*{} I(n,t) - \underbrace{I (n,0)}_{=0} = \int \limits _{0}^{t} I(n-1,a) \mathrm{ da}$
$\displaystyle \tag{4} I(n,t) = \int \limits _{0}^{t} I(n-1,a) \mathrm{ da}$
Now, to find $I'(0,t)$, to find this, I am going to rename the variable to apply differentiation under integral once again!
Let:
$\displaystyle \tag*{} I(s) = \int \limits _{0}^{2 \pi} e^{s \cos \theta} \cos (-s \sin \theta) \mathrm{ d \theta}$
$\displaystyle \tag*{} I'(s) = \int \limits _{0}^{2 \pi} \dfrac{\partial (e^{s \cos \theta}\cos (-s \sin \theta))}{\partial s} \mathrm{d \theta}$
$\displaystyle \tag*{} \dfrac{\partial (e^{s \cos \theta}\cos (s \sin \theta))}{\partial s} \mathrm{d \theta} = e^{s \cos \theta} \cos (\theta - s \sin \theta)$
and
$\displaystyle \tag*{} e^{s \cos \theta} \cos (\theta - s \sin \theta) \cdot s = \dfrac{\partial(e^{s \cos \theta} \sin (s \sin \theta))}{\partial \theta}$
$\displaystyle \tag*{} I(s) = \dfrac{1}{s} \int \limits _{0} ^{2 \pi} \partial( e^{s \cos \theta} \sin ( s \sin \theta)) = 0$
Now, so $I'(0,t) = 0$ , so why not plug this into $(4)$, we get:
$\displaystyle \tag*{}
\begin{align} I(0,t)&=2\pi \\\\ I(1,t) &= 2\pi\cdot t \\\\
I(2,t) &= 2 \pi \cdot \dfrac{t^2}{2!} \\\\
I(n,t) &= 2\pi \cdot \dfrac{t^n}{t!} \end{align}$
and
$\displaystyle \tag*{} I(n,1) = 2 \pi \cdot \dfrac{1^n}{t!}$
Hence,
$\displaystyle \tag*{} \boxed{\boxed{ \int \limits_{0}^{2 \pi} e^{ \cos \theta} \cos( n \theta - \sin \theta) \mathrm{d \theta} = \dfrac{2 \pi}{n!}}}$
Now, since $\cos x$ is even function, we have $\cos(-\sin x) = \cos(\sin x)$. So we have:
$\displaystyle \tag*{} \boxed{\boxed{ \int \limits_{0}^{2 \pi} e^{ \cos \theta} \cos(- \sin \theta) \mathrm{d \theta}=2 \pi= \int \limits_{0}^{2 \pi} e^{ \cos \theta} \cos(\sin \theta) \mathrm{d \theta}}}$