0

The same exercise requires us to prove that $\lim_{x \to \infty}x\log(1+\frac1x)=1$ just before proving the identity in the title. I can use this fact as follows:

$$\lim_{x \to \infty}\left(1+\frac1x\right)^x=\lim_{x \to \infty}e^{x\log(1+\frac1x)}=e$$

Is this proof valid? I'm asking because the author is using a complicated $\varepsilon-\delta$ proof which could have been avoided, if I'm not mistaken.

vitamin d
  • 5,783
super.t
  • 726

1 Answers1

-1

If you have $\log(1+x) =\int_0^x \dfrac{dt}{1+t} $, then, if $x > 0$, $\log(1+x) =\int_0^x \dfrac{dt}{1+t} \lt\int_0^x dt =x$ and $\log(1+x) \gt \int_0^x \dfrac{dt}{1+x} = \dfrac{x}{1+x} = \dfrac{x+x^2-x^2}{1+x} = x-\dfrac{x^2}{1+x} $ so $0 \gt \dfrac{\log(1+x)}{x}-1 \gt -\dfrac{x}{1+x} $ so $\lim_{x\to 0}\dfrac{\log(1+x)}{x} =1 $.

This is probably your proof.

marty cohen
  • 107,799