0

Given $a = \begin{bmatrix} 1 & 2 & 3 & 4\end{bmatrix}^\top$ and $b = \begin{bmatrix} k_1 & k_2 & k_3 & k_4\end{bmatrix}^\top$, find $\det(I + a b^\top)$.

Hikaru
  • 11

1 Answers1

0

Using Weinstein-Aronszajn,

$$\det \left( {\rm I}_4 + {\rm a} {\rm b}^\top \right) = 1 + {\rm b}^\top {\rm a} = \color{blue}{1 + k_1 + 2 k_2 + 3 k_3 + 4 k_4}$$

  • 1
    thank you very much for editing and answering my question. 本当にありがとうございました – Hikaru Apr 03 '21 at 14:01