Please point out any mistakes and flaws in my arguments. Thanks!
Hint: $\forall a\in D\setminus{0}$, $\mu(1) \leq \mu(a)$ (Proof. $\mu(1) \leq \mu(1a) = \mu(a)$)
Proof.
($\implies$) Suppose $\mu(1) = \mu(u)$ s.t. $u$ is a non-unit in $D$. $u = 0$ is not possible since $\mu(0)$ is undefined, so $u \neq 0$. Then $\exists q,r \in D$ s.t. $1 = uq + r$. If $r=0$, then $u$ is a unit, a contradiction. If $\mu(r) < \mu(u)$, then $\mu(r)< \mu(1)$, contradicting the hint. Thus $u$ is a unit.
($\impliedby$) Let $u$ be a unit in $D$. From the hint, $\mu(1) \leq \mu(u)$. Also $\mu(u) \leq \mu(uu^{-1}) = \mu(1)$. Thus $\mu(1) = \mu(u)$.