I want to prove the following:
Theorem: For integers $a,b,x$ and integers $m,n>0$, if \begin{align*} x&\equiv a \pmod{m} \newline x&\equiv a \pmod{n} \newline \gcd(m,n)&=1 \newline \end{align*} Then $x\equiv a \pmod{m\cdot n}$
I tried using the fact that for some integers $l_1, l_2$ we have $x-a=ml_1, x-a=nl_2$. I wasn't able to manipulate this in any way that gives me $mn|x-a$.