0

Number theory question, based on the theory of congruences.

Bill Dubuque
  • 272,048

2 Answers2

3

hint

$$3^3=27\equiv -1\mod 14$$

$$500=3\times 166+2$$

Remark

You can use Euler's Theorem $$gcd(3,14)=1\implies $$ $$3^{\phi(14)}\equiv 1 \mod 14$$

with $$\phi(14)=14(1-\frac 12)(1-\frac 17)=6$$

1

$2$ divides $3^{500}+5$, because $3^{500}+5\equiv1^{500}+5\equiv0\pmod 2$.

$7$ divides $3^{500}+5$, because $3^6\equiv1\pmod7$ (by Fermat's little theorem),

so $3^{498}\equiv1\pmod7 $, so $3^{500}+5\equiv3^2+5\equiv0\pmod7$.

J. W. Tanner
  • 60,406