$$2^n \ge n^3 \ \forall n\ge 1$$ My effort:
- Check the base case: $P(1): 2\ge1 \ \text{(true)}$
- supposing that $P(n) \Rightarrow P(n+1):$ $2^{n+1} \ge (n+1)^3$
- I'll try the induction step: $$2^{n+1} = 2^n \cdot 2 \ge 2n^3 = n^3 \cdot 2 \ge n^3 \cdot \frac{1}{(n+1)^3}$$ I'm not sure about the last step, but in any case, I can't find any way to get to $(n+1)^3$ and prove the induction step.
How can I do?