The function $f(x)=\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x...}}}}}\qquad$ quickly approaches $f(x) =x$.
$$f(x)=\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x...}}}}}\\=\sqrt{xf(x)}\\ \left[f(x)\right]^2=xf(x)\\\left[f(x)\right]^2-xf(x)=0\\f(x)[f(x)-x]=0\\ f(x)=0\\ f(x)=x$$
To say $2=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2...}}}}}\qquad$ makes intuitive sense. What do I do with $0=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2...}}}}}\qquad$?