This constant appears in Weierstrass factorization of $\Gamma(s)$:
$$
{1\over\Gamma(s)}=se^{\gamma s}\prod_{k\ge1}\left(1+\frac sk\right)e^{-s/k}
$$
and also in Mertens' formula:
$$
\prod_{p\le x}\left(1-\frac1p\right)={e^{-\gamma}\over\log x}\left[1+\mathcal O\left(1\over\log x\right)\right]
$$
Mertens' formula accounts for most appearance of $e^\gamma$ in number theory. For instance, it can be used to deduce the minimal order of Euler's totient function:
$$
\liminf_{n\to\infty}{\varphi(n)\log\log n\over n}=e^{-\gamma}
$$
and the maximal order for divisor sum function (aka Gronwall's theorem):
$$
\limsup_{n\to\infty}{\sigma(n)\over n\log\log n}=e^\gamma
$$