0

Let $t$ be a real number such that $\sin \dfrac{t}{2}\neq 0$. Show that

$$\sum ^{n}_{k=1}\sin kt=\dfrac{\cos\dfrac{t}{2}-\cos \left( n+\dfrac{1}{2}\right) t}{2\sin \dfrac{t}{2}}$$ for every positive $n$. What method should I use?

Any explanation is much appreciated.

Blue
  • 75,673

2 Answers2

3

Just an application of the formula Product-to-Sum

$$ 2 \sin \theta \sin \varphi=\cos (\theta-\varphi)-\cos (\theta+\varphi) $$

$$ \begin{aligned} & \sum_{k=1}^{n} \sin k t \\ =& \sum_{k=1}^{n} \frac{2 \sin \frac{t}{2} \cdot \sin k t}{2 \sin \frac{t}{2}} \\ =& \frac{\left.\sum_{k=1}^{n} [\cos \left(k t-\frac{t}{2}\right)-\cos \left(k t+\frac{t}{2}\right)\right]}{2 \sin \frac{t}{2}} \\ =& \frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \end{aligned} $$

Jean Marie
  • 81,803
Hugo
  • 685
3

Hint: Plug $z=\cos t+i \sin t$ in $$1+z+z^2+...+z^n=\frac{z^{n+1}-1}{z-1}$$

and equate real and imaginary parts!

Note: In this method, we also get the formula for $\sum_k \cos kt$