0

Prove $ \sum_{k=1}^{3n-1} (-1)^k\cos^n(\frac{k\pi}{3n}) =1 $ for any positive integer $n$

I tried to convert $\cos(x)$ into $\frac{e^{ix}+e^{-ix}}{2}$ and plugged in, and then expanded it using binomial resulted in very long exponential terms

$$\sum_{k=1}^{3n-1} e^\frac{4ik\pi}{3n}+{n \choose 1}e^\frac{(4n-2)ik\pi}{3n}+{n \choose 2}e^\frac{(4n-3)ik\pi}{3n}+...+{n \choose 1}e^\frac{-(4n-2)ik\pi}{3n}+e^\frac{-4ik\pi}{3n}$$ then i'm stuck on this step. can anyone give my ideas or show me a full solution? Thanks.

Kevin.S
  • 3,706

1 Answers1

3

First of all, this sum equals $-1$, not $1$.

As you have already noticed: \begin{align} \sum_{k=1}^{3n-1} (-1)^k \cos\left(\frac{k\pi}{3n}\right)^n &= \sum_{k=1}^{3n-1} (-1)^k\left(\frac 12\left(\exp\left(i\frac{k\pi}{3n}\right)+\exp\left(-i\frac{k\pi}{3n}\right)\right)\right)^n \\ &= 2^{-n} \sum_{k=1}^{3n-1} (-1)^k \sum_{j=0}^n \binom nj \exp\left(i\frac{(2j-n)k\pi}{3n}\right) \end{align}

Since $\exp(kx)=\exp(x)^k$, one gets a sum of truncated geometric series. Since $0<|(j+n)/(3n)|<1$ and thus $\exp\left(2\pi i\frac{(j+n)}{3n}\right)\neq 1$ for $0\le j\le n$, this can be rewritten as follows: \begin{align} 2^{-n} \sum_{k=1}^{3n-1} (-1)^k \sum_{j=0}^n \binom nj \exp\left(i\frac{(2j-n)k\pi}{3n}\right) &= 2^{-n} \sum_{j=0}^n \binom nj \sum_{k=1}^{3n-1} \left(-\exp\left(i\frac{(2j-n)\pi}{3n}\right)\right)^k \\ &= 2^{-n} \sum_{j=0}^n \binom nj \sum_{k=1}^{3n-1} \exp\left(2\pi i\cdot\frac{j+n}{3n}\right)^k \\ &= 2^{-n} \sum_{j=0}^n \binom nj \frac{\exp\left(2\pi i\cdot\frac{j+n}{3n}\right)-\exp\left(2\pi i\cdot\frac{j+n}{3n}\right)^{3n}}{1-\exp\left(2\pi i\cdot\frac{j+n}{3n}\right)}\\ &= 2^{-n} \sum_{j=0}^n \binom nj \cdot(-1) \\ &= -1 \end{align}

jb78685
  • 678
  • Thanks ,but how did $$-exp(i\frac{(2j-n)\pi}{3n})^k$$ become $$exp(2i\pi\frac{j+n}{3n})^k$$ – Unik Sillavich Mar 26 '21 at 13:44
  • 1
    @UnikSillavich $-1=\exp(i\pi)$ and $i(2j-n)\pi/(3n)+i\pi=2i\pi(j+n)/(3n)$, therefore $(-\exp(i(2j-n)\pi/(3n)))^k=\exp(2i\pi(j+n)/(3n))^k$ – jb78685 Mar 26 '21 at 19:45