$$a_{11}^2 + a_{12}^2 + a_{13}^2 = 1$$ $$\dfrac{a_{11}}{a_{33}a_{22}-a_{23}a_{32}} = \dfrac{a_{12}}{a_{21}a_{33}-a_{31}a_{23}} = \dfrac{a_{13}}{a_{22}a_{31}-a_{21}a_{32}} = k$$
$$k(a_{11}(a_{33}a_{22}-a_{23}a_{32})+a_{12}(a_{21}a_{33}-a_{31}a_{23})+a_{13}(a_{22}a_{31}-a_{21}a_{32})) = k \det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = 1. $$
Does someone know how to obtain the last equation combining the first and second ones?