Give an $\delta-\epsilon$ proof that the function $f:\mathbb{R}^3\to\mathbb{R}$ definded by $$f(x,y,z)=x^2y+2xz^2$$ is continuous at $(1,1,1)$.
Let $\epsilon<0$ then,
$$ \begin{equation} \begin{split} |x^2y+2xz^2-3| & = |(x^2y-y)+(y-1)+(2xz^2-2x)+(2x-2)| \\ & \leq |x^2y-y|+|y-1|+|2xz^2-2x|+|2x-2| \\ & = |y||x+1||x-1|+|y-1|+2|x||z+1||z-1|+2|x-1| \end{split} \end{equation} $$
For single variable I know how to handle $|x+1||x-1|$ $(\text{Using }|x+1||x-1|<\epsilon \implies\delta=\min\{1,\frac\epsilon3\})$, but for multivariable how to avoid any dependencies between variables?
It will be great help If anyone provide a legit way/hint/idea to deal this kind of problem(more general will be appreciated).