Determine whether the series $\sum_{n=1}^\infty \ln\left(\cos \frac{1}{n}\right)$ is convergent.
Attempt: Notice that the $p-$ series $\sum_{n=1}^\infty \frac{1}{n^2}$ with $p=2$ is convergent. Then, we have \begin{align*} \lim\limits_{n \to \infty} \frac{\ln\left(\cos \frac{1}{n} \right)}{\frac{1}{n^2}} &= -\frac{1}{2} \cdot \lim\limits_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} \cdot \frac{1}{\cos \frac{1}{n}} \\ &= -\frac{1}{2}. \end{align*} Hence, the limit is equal to $-\frac{1}{2} \ne 0$. Since the $p-$ series is convergent with $p=2$, by the limit comparison test, the series is convergent.
Am I true?