In this answer, $3$ proofs of
$$
\sum_{j=0}^m(-1)^{m-j}\binom{m}{j}\binom{j}{k}=[m=k]\tag1
$$
are given, where $[\cdots]$ are Iverson brackets.
Any polynomial, $P(x)$, of degree $n$ can be written as
$$
P(x)=\sum_{k=0}^nc_k\binom{x}{k}\tag2
$$
for some constants $c_k$.
Then the $m^\text{th}$ forward difference of $P(x)$ is
$$
\begin{align}
\sum_{j=0}^m(-1)^{m-j}\binom{m}{j}P(x+j)
&=\sum_{j=0}^m(-1)^{m-j}\binom{m}{j}\sum_{k=0}^nc_k\sum_{i=0}^k\binom{x}{i}\binom{j}{k-i}\tag{3a}\\
&=\sum_{k=0}^nc_k\sum_{i=0}^k\binom{x}{i}\sum_{j=0}^m(-1)^{m-j}\binom{m}{j}\binom{j}{k-i}\tag{3b}\\
&=\sum_{k=0}^nc_k\sum_{i=0}^k\binom{x}{i}[m=k-i]\tag{3c}\\
&=\sum_{k=0}^nc_k\binom{x}{k-m}\tag{3d}
\end{align}
$$
Explanation:
$\text{(3a)}$: apply $(2)$ and Vandermonde's Identity
$\text{(3b)}$: change the order of summation
$\text{(3c)}$: apply $(1)$
$\text{(3d)}$: apply the Iverson brackets
If $n\ge m$, $(3)$ shows that the $m^\text{th}$ forward difference of a polynomial of degree $n$, is a polynomial of degree $n-m$.
If $n\lt m$, then each term of the sum in $\text{(3d)}$ will be $0$. Therefore,
$$
\begin{align}
\sum_{k=0}^m(-1)^k(m-k)^n\binom{m}{k}
&=\sum_{k=0}^m(-1)^{m-k}\binom{m}{k}k^n\tag{4a}\\
&=\sum_{k=0}^m(-1)^{m-k}\binom{m}{k}P(0+k)\tag{4b}
\end{align}
$$
Explanation:
$\text{(4a)}$: substitute $k\mapsto m-k$
$\text{(4b)}$: $P(x)=x^n$
$\text{(4b)}$ is the $m^\text{th}$ forward difference of $P(x)=x^n$ at $x=0$, which, by $(3)$ is $0$ if $n\lt m$.