So let us assume that the required number is $x$.
Now by the given conditions,
\begin{align}
x\equiv 25\quad (mod\quad 36) \tag{1}\\
x\equiv 37 \quad(mod \quad 48)\tag{2}\\
x\equiv 53\quad (mod \quad 64)\tag{3}\\
\end{align}
$(1)\implies$ $x=36u+25$ for some $u\in\Bbb{Z}$ $\tag{4}$
Now $x=36u+25$ satisfies $(2)$
So $(2)\implies$ \begin{align}
&36u+25\equiv37\quad (mod \quad 48)\\
\text{i.e} \quad & 36u\equiv 12 \quad(mod \quad 48)\\
\text{i.e} \quad & 3u\equiv 1 \quad(mod \quad 4)\\
\end{align}
Solution of the above congruence is $u\equiv -1 \quad(mod\quad 4)\implies u\equiv 3 \quad(mod\quad 4)$
So $u=4v+3$ for some $v\in\Bbb{Z}$.
Thus from $(4),\quad x=144v+133$, $\tag{5}$
Again $(5)$ satisfies $(3)$. So
\begin{align}
& 144v+133\equiv 53\quad (mod \quad 64)\\
\text{i.e} \quad & 144v\equiv -80 \quad(mod \quad 64)\\
\text{i.e} \quad & 9v\equiv -5 \quad(mod \quad 4)\\
\end{align}
Solution of the above congruence is $v\equiv -1 \quad(mod\quad 4)\implies v\equiv 3 \quad(mod\quad 4)$
So $v=4w+3$ for some $w\in\Bbb{Z}$.
Thus from $(5),$$
\quad x=576w+565 \tag{6}$
Hence the required solution is $x\equiv 565 \quad(mod \quad 576)$
Since the least integer (obviously positive) is required, so putting $w=-1$ in $(6)$ yields $x=11$
PS: You could also use Chinese Remainder Theorem to find this value.
So $x$ is a solution iff for some integer $,n,$ we have $,x+11 = n:!\ell\iff x = n:!\ell - 11,,$ whose least positive value is clearly $,\ell - 11,,$ since $,\ell > 11\ \ $.
– Bill Dubuque Mar 21 '21 at 17:24