3

I am trying to calculate

$$ \int \limits_{0}^{\infty} \frac{ t^2 e^{-t}}{(1 + e^{-t})^2} dt $$

I used variable replacement $u = e^{-t} $ and got the integral

$$ \int \limits_{0}^{1} \frac{ \ln^2u}{(1 + u)^2} du $$

Wolfram says that it is $\frac{\pi}{6}$. But I have not idea. How can I get this result?

Thank you in advance for any help!

Quanto
  • 97,352
GThompson
  • 139
  • 8

1 Answers1

1

Note

\begin{align} \int_0^1\frac{\ln^2 u}{(u+1)^2}du &= \int_0^1{\ln^2 u}\>d(\frac{u}{u+1})\\ &=- 2\int_0^1\frac{\ln u}{u+1}du = -2 (-\frac{\pi^2}{12})=\frac{\pi^2}6 \end{align}

where $\int_0^1 \frac{\ln u}{u+1}dt =-\frac{\pi^2}{12}$

Quanto
  • 97,352