In this post it is proved that, if $(a_n)$ is a sequence in $\mathbb C$:
$$ \lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}a_n=k\implies\lim_{x\to\infty}\frac{1}{\log x}\sum_{n\leq x}\frac{a_n}{n}=k. $$
Is the converse to this statement true? In other words, is there a sequence $(a_n)$ with
$$ \lim_{x\to\infty}\frac{1}{\log x}\sum_{n\leq x}\frac{a_n}{n}=k $$
but $\lim_{x\to\infty}\frac1x\sum_{n\leq x}a_n$ converges to some other limit, or diverges? Thanks.