If $z_n\in \mathbb{C} $ and $0<\Re(z_n)<1, \ \forall n\geq 1 $
Given, $\left|\sum_{n=1}^{\infty} \frac{1}{\left(\frac{1}{2}-z_n\right)^2}\right|= \sum_{n=1}^{\infty} \frac{1}{\left|\frac{1}{2}-z_n\right|^2}$ then find the condition on $z_n$ so that the above equality holds.
Attempt
Write, $z_n=a_n+ib_n , 0<a_n<1$ $\Rightarrow|\sum_{n=1}^{\infty} \frac{1}{(\frac{1}{2}-z_n)^2}|^2= [\sum_{n=1}^{\infty} \frac{1}{|\frac{1}{2}-z_n|^2}]^2$
$\Rightarrow |\sum_{n=1}^{\infty} \frac{1}{(\frac{1}{2}-a_n-ib_n)^2}|^2= [\sum_{n=1}^{\infty} \frac{1}{(\frac{1}{2}-a_n)^2+b_n^2}]^2$ $\Rightarrow |\sum_{n=1}^{\infty} \frac{(\frac{1}{2}-a_n+ib_n)^2}{[(\frac{1}{2}-a_n)^2+b_n^2]^2}|^2= [\sum_{n=1}^{\infty} \frac{1}{(\frac{1}{2}-a_n)^2+b_n^2}]^2$ $\Rightarrow |\sum_{n=1}^{\infty} \frac{((\frac{1}{2}-a_n)^2-b_n^2)+i2b_n(\frac{1}{2}-a_n)}{[(\frac{1}{2}-a_n)^2+b_n^2]^2}|^2= [\sum_{n=1}^{\infty} \frac{1}{(\frac{1}{2}-a_n)^2+b_n^2}]^2$
$\Rightarrow [\sum_{n=1}^\infty\frac{((\frac{1}{2}-a_n)^2-b_n^2)}{ [ (\frac{1}{2}-a_n)^2+b_n^2]^2 }]^2 + [\sum_{n=1}^\infty\frac{2b_n(\frac{1}{2}-a_n)}{ [ (\frac{1}{2}-a_n)^2+b_n^2]^2 }]^2= [\sum_{n=1}^{\infty} \frac{1}{(\frac{1}{2}-a_n)^2+b_n^2}]^2$
\left
&\right
to some parenthesizing characters to make them automagically adjust their height to the content, as I did to the title. :) – CiaPan Mar 19 '21 at 12:25