Is it in general acceptable to replace $\underset{\delta\rightarrow 0}{\lim}$ with $\underset{k\delta\rightarrow 0}{\lim}$ for constant $k$?
What I mean by this is, if we have a real-valued function $f$ and we know that, say $\underset{\delta \rightarrow 0}{\lim} f(\delta)=L$ for real constant $k$, is it then valid to say that $$\underset{\delta \rightarrow 0}{\lim} f(k \delta)=\underset{k\delta \rightarrow 0}{\lim} f(k \delta)=\underset{\delta \rightarrow 0}{\lim} f(\delta)=L\:?$$
(I feel like this should always be the case, because for any constant $k$, $(\delta\rightarrow 0) \Longleftrightarrow (k\delta \rightarrow 0)$ but maybe I'm overlooking something)