Assuming that $x=\lfloor x\rfloor+\{x\}$, this is equivalent to
$$
(\lfloor x\rfloor+16\{x\})\{x\}=\frac{2021}{256}
$$
Let $n=\lfloor x\rfloor\in\mathbb{Z}$ and $t=\{x\}\in[0,1)$. Then we need to solve
$$
16t^2+nt-\frac{2021}{256}=0
$$
which by the quadratic formula gives
$$
t=\frac{-2n\pm\sqrt{4n^2+2021}}{64}
$$
To ensure that $t\ge0$, we need to take the positive square root.
If $\sqrt{4n^2+2021}\in\mathbb{Q}$, then $\sqrt{4n^2+2021}\in\mathbb{Z}$. So we must have a positive $m\in\mathbb{Z}$ so that
$$
(m-2n)(m+2n)=43\cdot47=1\cdot2021
$$
This leaves us with
$$\require{cancel}
\begin{array}{l}
&&t=\frac{m-2n}{64}&x=n+t\\\hline
n=1&m=45&t=\frac{43}{64}&x=\frac{107}{64}\\
n=-1&m=45&t=\frac{47}{64}&x=-\frac{17}{64}\\
n=505&m=1011&t=\frac1{64}&x=\frac{32321}{64}\\[-3pt]
n=-505&m=1011&\hspace{-1.5mm}\cancel{t=\frac{2021}{64}}
\end{array}
$$