Suppose $f$ is uniformly continuous on $[c, \infty)$, $c > 0$, and is continuous on $[0, \infty)$. Then $f$ is uniformly continuous on $[0, c + 1]$ since $f$ is continous and $[0, c + 1]$ is compact.
Consider that for all $[0, c + 1] \cup [c, \infty) = [0, \infty)$. Consider further that for all $x \in [0, \infty)$, the open ball $B_{1/3}(x) \cap [0, \infty)$ is a subset either of $[0, c + 1]$ or of $[c, \infty)$.
Now consider some $\epsilon > 0$. Take $\delta_1$ such that for all $x, y \in [0, c + 1]$, if $|x - y| < \delta_1$ then $|f(x) - f(y)| < \epsilon$. Take $\delta_2$ similarly for $[c, \infty)$.
Define $\delta = \min(\delta_1, \delta_2, 1/3)$. Consider $x, y \in [0, \infty)$ such that $|x - y| < \delta$. Suppose WLOG that $B_{1/3}(x) \cap [0, \infty) \subseteq [0, c + 1]$. And $y \in B_{1/3}(x) \cap [0, \infty)$. Then $x, y \in [0, c + 1]$. And $|x - y| < \delta \leq \delta_1$, so $|f(x) - f(y)| < \epsilon$. The case where $B_{1/3}(x) \cap [0, \infty) \subseteq [c, \infty)$ is analogous.
So $f$ is uniformly continuous on $[0, \infty)$.
To prove this for the function $f(x) = \sqrt{x}$, note that $f'$ is bounded on the interval $[1, \infty)$ and therefore $f$ is uniformly continous on $[1, \infty)$. Since $f$ is continuous on $[0, \infty)$, the uniform continuity of $f$ follows.