Does $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converge? I used the integral test and the function $f(x)=\frac{sin (\frac {\pi}{2}x)}{x}$ to determine that the series converges. I wanted to know if this function $f(x)$ is a valid choice to use the integral test on.
2 Answers
The integral test cannot be used here, here is another way of proving the convergence.
Let $ n\geq 1 $, we have the following : \begin{aligned}\sum_{k=1}^{n}{\frac{\left(-1\right)^{k-1}}{k}}&=\int_{0}^{1}{\sum_{k=1}^{n}{\left(-x\right)^{k-1}}\,\mathrm{d}x}\\ &=\int_{0}^{1}{\frac{1-\left(-1\right)^{n}x^{n}}{1+x}\,\mathrm{d}x}\\ \sum_{k=1}^{n}{\frac{\left(-1\right)^{k-1}}{k}}&=\ln{2}-\left(-1\right)^{n}\int_{0}^{1}{\frac{x^{n}}{1+x}\,\mathrm{d}x}\end{aligned}
Since : $ \left\vert\int_{0}^{1}{\frac{x^{n}}{1+x}\,\mathrm{d}x}\right\vert\leq\int_{0}^{1}{x^{n}\,\mathrm{d}x}=\frac{1}{n+1}\underset{n\to +\infty}{\longrightarrow}0$, then the sequence $ \left(\sum\limits_{k=1}^{n}{\frac{\left(-1\right)^{k-1}}{k}}\right)_{n\geq 1} $ converges, which means the series $ \sum\limits_{n\geq 1}{\frac{\left(-1\right)^{n-1}}{n}} $ converges. Also we have : $$ \sum_{n=1}^{+\infty}{\frac{\left(-1\right)^{n-1}}{n}}=\ln{2} $$

- 8,333
-
-
1@A-LevelStudent $ \mathbb{N}^{*}=\mathbb{N}\setminus\left\lbrace 0\right\rbrace$. It is a commonly used notation in French-speaking countries. – CHAMSI Mar 15 '21 at 17:27
-
@A-LevelStudent I assume not everyone will recognize it, so I'll change it to $ n\geq 1 $. – CHAMSI Mar 15 '21 at 17:32
-
1Oh, I see. In other countries (mine included) the set $\mathbb{N}$ anyways only includes the positive (non-zero) integers. Alternatively, you could write $\mathbb{Z^+}$ for the positive (non-zero) integers. – A-Level Student Mar 15 '21 at 17:36
Yes, it is an alternating series, and by the alternating series test, it does indeed converge!
You can verify it yourself, by substituitng $x=1$ into the Maclaurin series for $\ln( x+1)$, and that it converges to $\ln(2)$.

- 1,731
-
1Note though that the Macluarin series that you are using isn't always valid; it is only valid for $-1<x\leqslant 1$. – A-Level Student Mar 15 '21 at 17:25
$$\begin{align} \sum_{n=1}^{2N} \frac{(-1)^{n-1}}{n}&=\sum_{n=1}^N \left(\frac1{2n-1}-\frac1{2n}\right)\\ &=\sum_{n=1}^N \frac1{2n(2n-1)}\\ &\le \frac12 +\sum_{n=2}^N \frac1{2n(2n-2)}\\ &=\frac12+\frac14 \sum_{n=2}^N \left(\frac1{n-1}-\frac1n\right)\\ &=\frac12+\frac14 \left(1-\frac1N\right)\\&\le \frac34 \end{align}$$
and conclude the series converges.
– Mark Viola Mar 15 '21 at 17:30