Let $n\in\mathbb{Z}_{\geq2}$. Considering the ring $\mathbb{Z}/n\mathbb{Z}$, we denote $(\mathbb{Z}/n\mathbb{Z})^*$ to be its ring of units. Furthermore, the map $\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z};\,a\mapsto\overline{a}$ is meant to be the canonical projection modulo $n$.
claim 1: $\overline{a}\in\mathbb{Z}/n\mathbb{Z}$ zero-divisor $\iff$ $1<\gcd(a,n)<n$.
I am wondering if claim 1 is true or not. I was able to prove $''\implies''$ using Bézout as follows:
$$\gcd(a,n)=1\stackrel{\text{Bézout}}\iff\exists x,y\in\mathbb{Z}: ax+ny=1\iff ax\equiv 1\mod n \iff \overline{a}\in(\mathbb{Z}/n\mathbb{Z})^*.$$ So in particular $\overline{a}$ is not a zero-divisor.
If claim 1 is true, would it then imply the following proposition?
claim 2: $\overline{a}\in\mathbb{Z}/n\mathbb{Z}$ zero-divisor $\iff \overline{a}\notin(\mathbb{Z}/n\mathbb{Z})^*$