I have encountered the following proof of derivative from limits: let $f(x)= \frac{\ln\ x}{x}$
\begin{equation} f'(x) = \lim_{\Delta x \to 0} \frac{\frac{\ln(x+\Delta x)}{x+\Delta x} - \frac{\ln\ x}{x}}{\Delta x} \end{equation}
\begin{equation} f'(x) = \lim_{\Delta x \to 0} \frac{x\ ln(1+\frac{\Delta x}{x}) - \Delta x\ ln\ x}{x\Delta x(x+\Delta x)} \end{equation}
\begin{equation} f'(x) = lim_{\Delta x \rightarrow 0} \frac{\Delta x - \Delta x\ ln\ x}{x\Delta x(x+\Delta x)} \end{equation}
\begin{equation} f'(x) = \frac{1-ln\ x}{x^2} \end{equation}
From the 2nd to the 3rd line, I don't understand how the term $x\ ln(1+\frac{\Delta x}{x})$ was simplified to $\Delta x$ ?