6

I've been working on an integral, namely: $${\displaystyle \int_0^1 \frac{x^2}{1 + x^3}\ln(1 - x^4)dx}$$

Which I managed to narrow down to the following expression: $$\sum_{m=1}^{\infty} \frac{(-1)^mH_{\frac{3m}{4}}}{3m}$$

Where $H_n$ is the n-th harmonic number. I managed to get here after converting the integrand into a double summation, recognizing the digamma function hidden inside, and summing back to a harmonic number, but couldn't get past that.

Is there another way to solve the integral, or to solve the summation? I've tried breaking the sum down to its parts, but the best I could do was to find a few terms and was left with $$\sum_{m=1}^{\infty} \frac{(-1)^m\psi(\frac{3m}{4})}{3m}$$ Where $\psi(x)$ is the digamma function, and still couldn't solve that.

FDP
  • 13,647

4 Answers4

5

Let $\mathcal{I}$ denote the value of the following logarithmic integral:

$$\mathcal{I}:=\int_{0}^{1}\mathrm{d}x\,\frac{3x^{2}}{1+x^{3}}\ln{\left(1-x^{4}\right)}\approx-0.47159.$$

It will be shown that

$$\mathcal{I}=-\frac12\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{5\pi^{2}}{144}+\frac34\ln^{2}{\left(2\right)}.$$


Making use of the factorizations $\left(1+x^{3}\right)=\left(1+x\right)\left(1-x+x^{2}\right)$ and $\left(1-x^{4}\right)=\left(1-x\right)\left(1+x\right)\left(1+x^{2}\right)$, we can split up the integral into simpler components as

$$\begin{align} \mathcal{I} &=\int_{0}^{1}\mathrm{d}x\,\frac{3x^{2}}{1+x^{3}}\ln{\left(1-x^{4}\right)}\\ &=\int_{0}^{1}\mathrm{d}x\,\left[\frac{1}{1+x}+\frac{2x-1}{1-x+x^{2}}\right]\left[\ln{\left(1-x\right)}+\ln{\left(1+x\right)}+\ln{\left(1+x^{2}\right)}\right]\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{1}{1+x}\left[\ln{\left(1-x\right)}+\ln{\left(1+x\right)}+\ln{\left(1+x^{2}\right)}\right]\\ &~~~~~+\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\left[\ln{\left(1-x\right)}+\ln{\left(1+x\right)}+\ln{\left(1+x^{2}\right)}\right]\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1-x\right)}}{1+x}+\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x\right)}}{1+x}+\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x^{2}\right)}}{1+x}\\ &~~~~~+\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1-x\right)}+\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1+x\right)}\\ &~~~~~+\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1+x^{2}\right)}\\ &=:\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\mathcal{I}_{4}+\mathcal{I}_{5}+\mathcal{I}_{6}.\\ \end{align}$$


Let's focus on the last integral first.

Using the derivatives

$$\frac{d}{dx}\ln{\left(1-x+x^{2}\right)}=\frac{2x-1}{1-x+x^{2}},$$

and

$$\frac{d}{dx}\frac{\ln^{2}{\left(1-x+x^{2}\right)}}{2}=\frac{2x-1}{1-x+x^{2}}\ln{\left(1-x+x^{2}\right)},$$

we show that the following integral vanishes identically:

$$\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1-x+x^{2}\right)}=\frac{\ln^{2}{\left(1-x+x^{2}\right)}}{2}\bigg{|}_{0}^{1}=0.$$

Then, $\mathcal{I}_{6}$ can be rewritten in the following way:

$$\begin{align} \mathcal{I}_{6} &=\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1+x^{2}\right)}\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1+x^{2}\right)}-\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1-x+x^{2}\right)}\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\left[\ln{\left(1+x^{2}\right)}-\ln{\left(1-x+x^{2}\right)}\right]\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(\frac{1+x^{2}}{1-x+x^{2}}\right)}\\ &=\int_{1}^{0}\mathrm{d}y\,\frac{\left(-2\right)}{\left(1+y\right)^{2}}\cdot\frac{\left(1+y\right)\left(1-3y\right)}{\left(1+3y^{2}\right)}\ln{\left(\frac{2+2y^{2}}{1+3y^{2}}\right)};~~~\small{\left[x=\frac{1-y}{1+y}\right]}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{2}{\left(1+y\right)}\cdot\frac{\left(1-3y\right)}{\left(1+3y^{2}\right)}\ln{\left(\frac{2+2y^{2}}{1+3y^{2}}\right)}\\ &=\int_{0}^{1}\mathrm{d}y\,\left[\frac{2}{\left(1+y\right)}-\frac{6y}{\left(1+3y^{2}\right)}\right]\ln{\left(\frac{2+2y^{2}}{1+3y^{2}}\right)}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{2}{\left(1+y\right)}\ln{\left(\frac{2+2y^{2}}{1+3y^{2}}\right)}-\int_{0}^{1}\mathrm{d}y\,\frac{6y}{\left(1+3y^{2}\right)}\ln{\left(\frac{2+2y^{2}}{1+3y^{2}}\right)}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{2}{\left(1+y\right)}\left[\ln{\left(2\right)}+\ln{\left(1+y^{2}\right)}-\ln{\left(1+3y^{2}\right)}\right]\\ &~~~~~-\int_{0}^{1}\mathrm{d}t\,\frac{3}{\left(1+3t\right)}\ln{\left(\frac{2+2t}{1+3t}\right)};~~~\small{\left[y^{2}=t\right]}\\ &=2\ln{\left(2\right)}\int_{0}^{1}\mathrm{d}y\,\frac{1}{\left(1+y\right)}+2\int_{0}^{1}\mathrm{d}y\,\frac{\ln{\left(1+y^{2}\right)}}{\left(1+y\right)}-2\int_{0}^{1}\mathrm{d}y\,\frac{\ln{\left(1+3y^{2}\right)}}{\left(1+y\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}u\,\frac{3}{\left(1+3u\right)}\ln{\left(1+u\right)};~~~\small{\left[t=\frac{1-u}{1+3u}\right]}\\ &=2\ln^{2}{\left(2\right)}+2\mathcal{I}_{3}-2\int_{0}^{1}\mathrm{d}y\,\frac{\ln{\left(1+3y^{2}\right)}}{\left(1+y\right)}\\ &~~~~~+\operatorname{Li}_{2}{\left(\frac34\right)}-\operatorname{Li}_{2}{\left(\frac12\right)}+\operatorname{Li}_{2}{\left(-1\right)}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\operatorname{Li}_{2}{\left(\frac12\right)}+\operatorname{Li}_{2}{\left(-1\right)}+2\ln^{2}{\left(2\right)}+2\mathcal{I}_{3}\\ &~~~~~-2\int_{1}^{2}\mathrm{d}t\,\frac{\ln{\left(1+3(t-1)^{2}\right)}}{t};~~~\small{\left[1+y=t\right]}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\operatorname{Li}_{2}{\left(\frac12\right)}+\operatorname{Li}_{2}{\left(-1\right)}+2\ln^{2}{\left(2\right)}+2\mathcal{I}_{3}\\ &~~~~~-2\int_{1}^{2}\mathrm{d}t\,\frac{\ln{\left(3t^{2}-6t+4\right)}}{t}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\operatorname{Li}_{2}{\left(\frac12\right)}+\operatorname{Li}_{2}{\left(-1\right)}+2\ln^{2}{\left(2\right)}+2\mathcal{I}_{3}\\ &~~~~~-2\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}u\,\frac{\ln{\left(4u^{2}-4\sqrt{3}\,u+4\right)}}{u};~~~\small{\left[t=\frac{2u}{\sqrt{3}}\right]}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\operatorname{Li}_{2}{\left(\frac12\right)}+\operatorname{Li}_{2}{\left(-1\right)}+2\ln^{2}{\left(2\right)}+2\mathcal{I}_{3}\\ &~~~~~-2\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}u\,\frac{\ln{\left(4\right)}}{u}-2\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}u\,\frac{\ln{\left(u^{2}-\sqrt{3}\,u+1\right)}}{u}\\ &=2\mathcal{I}_{3}-\frac{\pi^{2}}{6}-\frac32\ln^{2}{\left(2\right)}+\operatorname{Li}_{2}{\left(\frac34\right)}-2\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}.\\ \end{align}$$

The integral $\mathcal{I}_{3}$ can in turn be reduced to

$$\begin{align} \mathcal{I}_{3} &=\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x^{2}\right)}}{1+x}\\ &=\int_{1}^{2}\mathrm{d}y\,\frac{\ln{\left(1+(y-1)^{2}\right)}}{y};~~~\small{\left[1+x=y\right]}\\ &=\int_{1}^{2}\mathrm{d}y\,\frac{\ln{\left(2-2y+y^{2}\right)}}{y}\\ &=\int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}}\mathrm{d}t\,\frac{\ln{\left(2-2t\sqrt{2}+2t^{2}\right)}}{t};~~~\small{\left[y=t\sqrt{2}\right]}\\ &=\int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}}\mathrm{d}t\,\frac{\ln{\left(2\right)}}{t}+\int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}}\mathrm{d}t\,\frac{\ln{\left(1-\sqrt{2}\,t+t^{2}\right)}}{t}\\ &=\ln^{2}{\left(2\right)}+\int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{2}\,x+x^{2}\right)}}{x}.\\ \end{align}$$

Next up, $\mathcal{I}_{5}$ can be reduced to a similar expression involving the same undetermined integral in the expression for $\mathcal{I}_{6}$:

$$\begin{align} \mathcal{I}_{5} &=\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1+x\right)}\\ &=-\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1-x+x^{2}\right)}}{1+x};~~~\small{I.B.P.s}\\ &=-\int_{1}^{2}\mathrm{d}y\,\frac{\ln{\left(3-3y+y^{2}\right)}}{y};~~~\small{\left[x=y-1\right]}\\ &=-\int_{\frac{1}{\sqrt{3}}}^{\frac{2}{\sqrt{3}}}\mathrm{d}t\,\frac{\ln{\left(3-3t\sqrt{3}+3t^{2}\right)}}{t};~~~\small{\left[y=t\sqrt{3}\right]}\\ &=-\int_{\frac{1}{\sqrt{3}}}^{\frac{2}{\sqrt{3}}}\mathrm{d}t\,\frac{\ln{\left(3\right)}}{t}-\int_{\frac{1}{\sqrt{3}}}^{\frac{2}{\sqrt{3}}}\mathrm{d}t\,\frac{\ln{\left(1-\sqrt{3}\,t+t^{2}\right)}}{t}\\ &=-\ln{\left(2\right)}\ln{\left(3\right)}-\int_{\frac{1}{\sqrt{3}}}^{\frac{2}{\sqrt{3}}}\mathrm{d}t\,\frac{\ln{\left(1-\sqrt{3}\,t+t^{2}\right)}}{t}\\ &=-\ln{\left(2\right)}\ln{\left(3\right)}-\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}u\,\frac{\ln{\left(\frac{1-\sqrt{3}\,u+u^{2}}{u^{2}}\right)}}{u};~~~\small{\left[t=u^{-1}\right]}\\ &=-\ln{\left(2\right)}\ln{\left(3\right)}+\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}u\,\frac{2\ln{\left(u\right)}-\ln{\left(1-\sqrt{3}\,u+u^{2}\right)}}{u}\\ &=-\ln{\left(2\right)}\ln{\left(3\right)}+\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}u\,\frac{2\ln{\left(u\right)}}{u}-\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}u\,\frac{\ln{\left(1-\sqrt{3}\,u+u^{2}\right)}}{u}\\ &=-\ln^{2}{\left(2\right)}-\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}.\\ \end{align}$$

The remaining three integrals $\mathcal{I}_{1,2,4}$ each have nice exact values in terms of well-known constants: we have

$$\mathcal{I}_{1}=\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1-x\right)}}{1+x}=-\operatorname{Li}_{2}{\left(\frac12\right)}=\frac12\ln^{2}{\left(2\right)}-\frac{\pi^{2}}{12},$$

$$\mathcal{I}_{2}=\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x\right)}}{1+x}=\frac12\ln^{2}{\left(2\right)},$$

and

$$\begin{align} \mathcal{I}_{4} &=\int_{0}^{1}\mathrm{d}x\,\frac{2x-1}{1-x+x^{2}}\ln{\left(1-x\right)}\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1-x+x^{2}\right)}}{1-x};~~~\small{I.B.P.s}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{\ln{\left(1-y+y^{2}\right)}}{y};~~~\small{\left[x=1-y\right]}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{\ln{\left(1+y^{3}\right)}}{y}-\int_{0}^{1}\mathrm{d}y\,\frac{\ln{\left(1+y\right)}}{y}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{\ln{\left(1+t\right)}}{3t};~~~\small{\left[y^{3}=t\right]}\\ &~~~~~-\int_{0}^{1}\mathrm{d}y\,\frac{\ln{\left(1+y\right)}}{y}\\ &=-\frac23\int_{0}^{1}\mathrm{d}t\,\frac{\ln{\left(1+t\right)}}{t}\\ &=\frac23\operatorname{Li}_{2}{\left(-1\right)}\\ &=-\frac{\pi^{2}}{18}.\\ \end{align}$$

Then,

$$\begin{align} \mathcal{I} &=\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\mathcal{I}_{4}+\mathcal{I}_{5}+\mathcal{I}_{6}\\ &=\left[\frac12\ln^{2}{\left(2\right)}-\frac{\pi^{2}}{12}\right]+\frac12\ln^{2}{\left(2\right)}+\mathcal{I}_{3}-\frac{\pi^{2}}{18}\\ &~~~~~-\ln^{2}{\left(2\right)}-\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}\\ &~~~~~+2\mathcal{I}_{3}-\frac{\pi^{2}}{6}-\frac32\ln^{2}{\left(2\right)}+\operatorname{Li}_{2}{\left(\frac34\right)}-2\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{11\pi^{2}}{36}-\frac32\ln^{2}{\left(2\right)}+3\mathcal{I}_{3}\\ &~~~~~-3\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{11\pi^{2}}{36}-\frac32\ln^{2}{\left(2\right)}\\ &~~~~~+3\left[\ln^{2}{\left(2\right)}+\int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{2}\,x+x^{2}\right)}}{x}\right]\\ &~~~~~-3\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{11\pi^{2}}{36}+\frac32\ln^{2}{\left(2\right)}\\ &~~~~~+3\int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{2}\,x+x^{2}\right)}}{x}-3\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}.\\ \end{align}$$


At this point, it will be helpful to introduce a two-variable variant of the dilogarithm function:

$$\operatorname{Li}_{2}{\left(r,\theta\right)}:=-\frac12\int_{0}^{r}\mathrm{d}x\,\frac{\ln{\left(1-2x\cos{\left(\theta\right)}+x^{2}\right)}}{x};~~~\small{\left(r,\theta\right)\in\mathbb{R}^{2}}.$$

This function can be shown to satisfy the following pair of formulas useful to the problem at hand:

$$\operatorname{Li}_{2}{\left(\cos{\left(\theta\right)},\theta\right)}=\frac12\left(\frac{\pi}{2}-\theta\right)^{2}+\frac14\operatorname{Li}_{2}{\left(\cos^{2}{\left(\theta\right)}\right)};~~~\small{\theta\in\left[0,\pi\right]},$$

$$\operatorname{Li}_{2}{\left(2\cos{\left(\theta\right)},\theta\right)}=\left(\frac{\pi}{2}-\theta\right)^{2};~~~\small{\theta\in\left[0,\pi\right]}.$$

Then, for $\theta\in\left(0,\frac{\pi}{2}\right)$, we have

$$\begin{align} \int_{\cos{\left(\theta\right)}}^{2\cos{\left(\theta\right)}}\mathrm{d}x\,\frac{\ln{\left(1-2x\cos{\left(\theta\right)}+x^{2}\right)}}{x} &=\int_{0}^{2\cos{\left(\theta\right)}}\mathrm{d}x\,\frac{\ln{\left(1-2x\cos{\left(\theta\right)}+x^{2}\right)}}{x}\\ &~~~~~-\int_{0}^{\cos{\left(\theta\right)}}\mathrm{d}x\,\frac{\ln{\left(1-2x\cos{\left(\theta\right)}+x^{2}\right)}}{x}\\ &=-2\operatorname{Li}_{2}{\left(2\cos{\left(\theta\right)},\theta\right)}+2\operatorname{Li}_{2}{\left(\cos{\left(\theta\right)},\theta\right)}\\ &=-2\left(\frac{\pi}{2}-\theta\right)^{2}+2\left[\frac12\left(\frac{\pi}{2}-\theta\right)^{2}+\frac14\operatorname{Li}_{2}{\left(\cos^{2}{\left(\theta\right)}\right)}\right]\\ &=\frac12\operatorname{Li}_{2}{\left(\cos^{2}{\left(\theta\right)}\right)}-\left(\frac{\pi}{2}-\theta\right)^{2}.\\ \end{align}$$

We can now complete our calculation for $\mathcal{I}$:

$$\begin{align} \mathcal{I} &=\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{11\pi^{2}}{36}+\frac32\ln^{2}{\left(2\right)}\\ &~~~~~+3\int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{2}\,x+x^{2}\right)}}{x}-3\int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}}\mathrm{d}x\,\frac{\ln{\left(1-\sqrt{3}\,x+x^{2}\right)}}{x}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{11\pi^{2}}{36}+\frac32\ln^{2}{\left(2\right)}\\ &~~~~~+3\int_{\cos{\left(\frac{\pi}{4}\right)}}^{2\cos{\left(\frac{\pi}{4}\right)}}\mathrm{d}x\,\frac{\ln{\left(1-2x\cos{\left(\frac{\pi}{4}\right)}+x^{2}\right)}}{x}\\ &~~~~~-3\int_{\cos{\left(\frac{\pi}{6}\right)}}^{2\cos{\left(\frac{\pi}{6}\right)}}\mathrm{d}x\,\frac{\ln{\left(1-2x\cos{\left(\frac{\pi}{6}\right)}+x^{2}\right)}}{x}\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{11\pi^{2}}{36}+\frac32\ln^{2}{\left(2\right)}\\ &~~~~~+3\left[\frac12\operatorname{Li}_{2}{\left(\cos^{2}{\left(\frac{\pi}{4}\right)}\right)}-\left(\frac{\pi}{2}-\frac{\pi}{4}\right)^{2}\right]\\ &~~~~~-3\left[\frac12\operatorname{Li}_{2}{\left(\cos^{2}{\left(\frac{\pi}{6}\right)}\right)}-\left(\frac{\pi}{2}-\frac{\pi}{6}\right)^{2}\right]\\ &=\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{11\pi^{2}}{36}+\frac32\ln^{2}{\left(2\right)}\\ &~~~~~+\frac32\operatorname{Li}_{2}{\left(\frac12\right)}-\frac{3\pi^{2}}{16}\\ &~~~~~-\frac32\operatorname{Li}_{2}{\left(\frac34\right)}+\frac{\pi^{2}}{3}\\ &=-\frac12\operatorname{Li}_{2}{\left(\frac34\right)}+\frac{\pi^{2}}{36}+\frac32\ln^{2}{\left(2\right)}\\ &~~~~~+\frac32\left[\frac{\pi^{2}}{12}-\frac12\ln^{2}{\left(2\right)}\right]-\frac{3\pi^{2}}{16}\\ &=-\frac12\operatorname{Li}_{2}{\left(\frac34\right)}-\frac{5\pi^{2}}{144}+\frac34\ln^{2}{\left(2\right)}.\blacksquare\\ \end{align}$$


David H
  • 29,921
  • 1
    Dude, you are my hero. Thank you so, so much for the answer! I was under the impression I had to use the dilog function at some point, but had no idea on how to go about it. – Alexandre Ribeiro Mar 22 '21 at 03:50
  • @AlexandreRibeiro You are quite welcome. ;) – David H Mar 22 '21 at 04:33
  • if I may ask, where can I learn more about the two-variable version of the dilog function? – Alexandre Ribeiro Mar 22 '21 at 11:23
  • @AlexandreRibeiro The best source is probably “Polylogarithms and Associated Functions”, by Leonard Lewin. – David H Mar 22 '21 at 15:48
  • thanks once more :) I have one last question (I think), if I may. How did you find the value for the integral of [3*ln(1 + u)]/(1 + 3u)? It doesn't have to be flat-out explicit, I just want you to point me in the direction you took to get to the results. – Alexandre Ribeiro Mar 24 '21 at 04:15
  • 1
    A labor of love. – A rural reader Mar 26 '21 at 00:16
  • @AlexandreRibeiro That value can be computed from my formula I derived here: https://math.stackexchange.com/questions/1337456/how-to-compute-the-integral-i-leftc-right-int-01-frac-ln1-cx1x/1427136#1427136 – David H Mar 26 '21 at 22:49
  • David H I ended up using two identities for the Li2 function after arriving at a result which involved Li(-2) and Li(-1/2) and managed to reach the same conclusion, but thanks anyway, it's an amazing result! – Alexandre Ribeiro Mar 27 '21 at 02:05
5

\begin{align*}J&=\int_0^1 \frac{x^2\ln(1-x^4)}{1+x^3}dx\\ &\overset{y=\frac{1-x}{1+x}}=3\ln^2 2+3\underbrace{\int_0^1 \frac{\ln y}{1+y}dy}_{=-\dfrac{\pi^2}{12}}+\underbrace{\int_0^1 \frac{\ln(1+y^2)}{1+y}dy}_{=\dfrac{3}{4}\ln^2 2-\dfrac{1}{18}\pi^2}-2\ln^2 2-6\ln 2\underbrace{\int_0^1 \frac{y}{1+3y^2}dy}_{\dfrac{1}{3}\ln 2}-\\&2\underbrace{\int_0^1 \frac{y\ln y}{1+3y^2}dy}_{z=y^2}-2\underbrace{\int_0^1 \frac{y\ln(1+y^2)}{1+3y^2}dy}_{z=y^2}+8\int_0^1 \frac{y\ln(1+y)}{1+3y^2}dy\\ &=-\frac{1}{4}\ln^2 2-\frac{5}{48}\pi^2-\frac{1}{2}\underbrace{\int_0^1 \frac{\ln z}{1+3z}dz}_{=A}-\underbrace{\int_0^1 \frac{\ln(1+ z)}{1+3z}dz}_{=B}+8\underbrace{\int_0^1 \frac{y\ln(1+y)}{1+3y^2}dy}_{=C} \end{align*} \begin{align*} A&\overset{\text{IBP}}=-\frac{1}{3}\int_0^1 \frac{\ln(1+3z)}{z}dz\\ &\overset{u=\frac{1}{1+3z}}=\frac{1}{3}\int_{\frac{1}{4}}^1 \frac{\ln u}{u(1-u)}du\\ &=-\frac{2}{3}\ln^2 2+\frac{1}{3}\int_{\frac{1}{4}}^1 \frac{\ln u}{1-u}du\\ &=-\frac{2}{3}\ln^2 2-\frac{\pi^2}{18}-\frac{1}{3}\int_0^{\frac{1}{4}} \frac{\ln u}{1-u}du\\ &\overset{x=4u}=-\frac{2}{3}\ln^2 2-\frac{\pi^2}{18}-\frac{1}{12}\int_0^1 \frac{\ln\left(\frac{1}{4}x\right)}{1-\frac{1}{4}x}dx\\ &=\frac{2}{3}\ln^2 2-\frac{\pi^2}{18}-\frac{2}{3}\ln 2\ln 3-\frac{1}{12}\int_0^1 \frac{\ln x}{1-\frac{1}{4}x}dx\\ &=\boxed{\frac{2}{3}\ln^2 2-\frac{\pi^2}{18}-\frac{2}{3}\ln 2\ln 3+\frac{1}{3}\text{Li}_2\left(\frac{1}{4}\right)}\\ B&\overset{x=\frac{1}{1+3z}}=\frac{1}{3}\int_{\frac{1}{4}}^1 \frac{\ln(1+2x)}{x}dx+\frac{2}{3}\ln^2 2-\frac{2}{3}\ln 2\ln 3\\ &\overset{\text{IBP}}=\frac{1}{3}\Big[\ln x\ln(1+2x)\Big]_{\frac{1}{4}}^1-\frac{2}{3}\int_{\frac{1}{4}}^1 \frac{\ln x}{1+2x}dx+\frac{2}{3}\ln^2 2-\frac{2}{3}\ln 2\ln 3\\ &=-\frac{2}{3}\int_{\frac{1}{4}}^1 \frac{\ln x}{1+2x}dx\\ &=-\frac{2}{3}\underbrace{\int_0^1 \frac{\ln x}{1+2x}dx}_{y=2x}+\frac{2}{3}\underbrace{\int_0^{\frac{1}{4}} \frac{\ln x}{1+2x}dx}_{y=4x}\\ &=\frac{1}{6}\int_0^1 \frac{\ln\left(\frac{y}{4}\right)}{1+\frac{y}{2}}dy-\frac{1}{3}\int_0^2 \frac{\ln\left(\frac{y}{2}\right)}{1+y}dy\\ &=\frac{1}{3}\text{Li}_2\left(-\frac{1}{2}\right)+\frac{2}{3}\ln^2 2-\frac{1}{3}\ln 2\ln 3 -\frac{1}{3}\int_0^2 \frac{\ln y}{1+y}dy\\ &=\frac{1}{3}\text{Li}_2\left(-\frac{1}{2}\right)+\frac{2}{3}\ln^2 2-\frac{1}{3}\ln 2\ln 3 -\frac{1}{3}\int_0^1 \frac{\ln y}{1+y}dy-\frac{1}{3}\underbrace{\int_1^2 \frac{\ln y}{1+y}dy}_{z=\frac{1}{y}}\\ &=\frac{1}{3}\text{Li}_2\left(-\frac{1}{2}\right)+\frac{2}{3}\ln^2 2-\frac{1}{3}\ln 2\ln 3 -\frac{1}{3}\int_0^1 \frac{\ln y}{1+y}dy+\frac{1}{3}\int_{\frac{1}{2}}^1 \frac{\ln z}{(1+z)z}dz\\ &=\frac{1}{3}\text{Li}_2\left(-\frac{1}{2}\right)+\frac{1}{2}\ln^2 2-\frac{1}{3}\ln 2\ln 3 -\frac{1}{3}\int_0^1 \frac{\ln y}{1+y}dy-\frac{1}{3}\int_{\frac{1}{2}}^1 \frac{\ln z}{1+z}dz\\ &=\frac{1}{3}\text{Li}_2\left(-\frac{1}{2}\right)+\frac{1}{2}\ln^2 2-\frac{1}{3}\ln 2\ln 3 -\frac{2}{3}\underbrace{\int_0^1 \frac{\ln y}{1+y}dy}_{=-\frac{1}{12}\pi^2}+\frac{1}{3}\underbrace{\int_0^{\frac{1}{2}} \frac{\ln z}{1+z}dz}_{x=2z}\\ &=\boxed{\frac{2}{3}\text{Li}_2\left(-\frac{1}{2}\right)+\frac{5}{6}\ln^2 2-\frac{2}{3}\ln 2\ln 3 +\frac{1}{18}\pi^2}\\ \end{align*} \begin{align*} C'&=\int_0^1 \frac{y\ln(1-y)}{1+3y^2}dy\\ C+C'&\overset{z=1-y^2}=\frac{1}{8}\int_0^1\frac{\ln z}{1-\frac{3}{4}z}dz\\ &=-\frac{1}{6}\text{Li}_2\left(\frac{3}{4}\right)\\ C^\prime-C&\overset{z=\frac{1-y}{1+y}}=\int_0^1 \frac{(1-z)\ln z}{2(1+z)(z^2-z+1)}dz\\ &\overset{\text{IBP}}=\left[\left(\frac{1}{3}\ln(1+z)-\frac{1}{6}\ln(1-z+z^2)\right)\ln z\right]_0^1-\frac{1}{3}\int_0^1 \frac{\ln(1+z)}{z}dz+\frac{1}{6}\int_0^1 \frac{\ln\left(\frac{1+z^3}{1+z}\right)}{z}dz\\ &=-\frac{1}{2}\int_0^1 \frac{\ln(1+z)}{z}dz+\frac{1}{6}\underbrace{\int_0^1 \frac{\ln\left(1+z^3\right)}{z}dz}_{u=z^3}\\ &=-\frac{4}{9}\underbrace{\int_0^1 \frac{\ln(1+z)}{z}dz}_{=\frac{1}{12}\pi^2}\\ &=\boxed{-\frac{1}{27}\pi^2} \end{align*} Therefore, \begin{align*} C&=\boxed{-\frac{1}{12}\text{Li}_2\left(\frac{3}{4}\right)+\frac{1}{54}\pi^2}\\ J&=\boxed{\ln 2\ln 3-\frac{17}{12}\ln^2 2-\frac{1}{6}\text{Li}_2\left(\frac{1}{4}\right)+\frac{7}{432}\pi^2-\frac{2}{3}\text{Li}_2\left(-\frac{1}{2}\right)-\frac{2}{3}\text{Li}_2\left(\frac{3}{4}\right)} \end{align*} Since, \begin{align*}0\leq x<1,\text{Li}_2(x)+\text{Li}_2(1-x)&=\frac{\pi^2}{6}-\ln(1-x)\ln x\\ -1\leq x<1,\text{Li}_2(x)+\text{Li}_2(-x)&=\frac{1}{2}\text{Li}_2(x^2) \end{align*} Then, \begin{align*} \text{Li}_2\left(\frac{3}{4}\right)&=\frac{1}{6}\pi^2-4\ln^2 2+2\ln2 \ln 3-\text{Li}_2\left(\frac{1}{4}\right)\\ \text{Li}_2\left(-\frac{1}{2}\right)&=\frac{1}{2}\text{Li}_2\left(\frac{1}{4}\right)-\underbrace{\text{Li}_2\left(\frac{1}{2}\right)}_{=\frac{1}{12}\pi^2-\frac{1}{2}\ln^2 2}\\ \end{align*} Thus, $\boxed{\displaystyle J=\frac{11}{12}\ln^2 2-\frac{1}{3}\ln 2\ln 3-\frac{17}{432}\pi^2+\frac{1}{6}\text{Li}_2\left(\frac{1}{4}\right)}$

NB: I assume that, \begin{align*}-1\leq a\leq 1,\text{Li}_2\left(a\right)&=-a\int_0^1 \frac{\ln t}{1-at}dt\\ \int_0^1 \frac{\ln x}{1+x}dx&=-\frac{1}{12}\pi^2\\ \int_0^1 \frac{\ln(1+x)}{x}dx&=\frac{1}{12}\pi^2\\ \end{align*}

FDP
  • 13,647
3

Maple gives a rather unpleasant expression involving complex dilogarithm functions:

$$-\frac{19 \pi^{2}}{144}+\frac{7 \ln \! \left(2\right)^{2}}{12}-\frac{\ln \! \left(2-\sqrt{3}\right)^{2}}{6}+\frac{\mathit{dilog}\! \left(\frac{1}{2}+\frac{i \sqrt{3}}{6}\right)}{3}-\frac{\mathit{dilog}\! \left(\frac{3}{2}-\frac{i}{2}+\left(-\frac{1}{2}+\frac{i}{2}\right) \sqrt{3}\right)}{3}-\frac{\mathit{dilog}\! \left(\frac{3}{2}-\frac{i}{2}+\left(\frac{1}{2}-\frac{i}{2}\right) \sqrt{3}\right)}{3}-\frac{\mathit{dilog}\! \left(\frac{3}{2}+\frac{i}{2}+\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{3}\right)}{3}-\frac{\mathit{dilog}\! \left(1-\frac{i \sqrt{3}}{3}\right)}{3}+\frac{\mathit{dilog}\! \left(\frac{1}{2}-\frac{i \sqrt{3}}{6}\right)}{3}-\frac{\mathit{dilog}\! \left(1+\frac{i \sqrt{3}}{3}\right)}{3}-\frac{\mathit{dilog}\! \left(\frac{3}{2}+\frac{i}{2}-\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{3}\right)}{3}+\frac{\mathit{dilog}\! \left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)}{3}+\frac{\mathit{dilog}\! \left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)}{3} $$

I suspect this comes from writing the rational function $x^2/(1+x^3)$ in partial fractions and also writing $\ln(1-x^4) = \ln(1-x) + \ln(1+x) + \ln(1-ix) + \ln(1+ix)$.

Robert Israel
  • 448,999
1

Too long for comments

I do not know how you arrived at $$S_p=\sum _{m=1}^p \frac{(-1)^m }{3 m}\psi \left(\frac{3 m}{4}\right)$$ with $p\to \infty$ because this does not converge; for example $$S_{10000}\sim 0.341858 \qquad \text{and} \qquad S_{10001}\sim 0.341561$$ and I do not see how this relates to the value of the integral which is $-0.157197$.

Assuming that you wrote $$\frac{x^2}{1+x^3}=\sum _{n=0}^\infty (-1)^n x^{3 n+2}$$ you should have for the integral $${\displaystyle \int_0^1 \frac{x^2}{1 + x^3}\log(1 - x^4)\,dx}=\sum _{n=0}^\infty \frac{(-1)^{n+1}}{3(n+1) } H_{\frac{3 (n+1)}{4}}$$ which converges to the correct value.

Consider numerically $$T_k=\sum _{n=0}^{10^k} \frac{(-1)^{n+1}}{3(n+1) } H_{\frac{3 (n+1)}{4}}\qquad \text{and} \qquad U_k=\sum _{n=0}^{10^k+1} \frac{(-1)^{n+1}}{3(n+1) } H_{\frac{3 (n+1)}{4}}$$ $$\left( \begin{array}{cccc} k & T_k & U_k & T_k - U_k\\ 1 & -0.197575 & -0.118992 & -0.0785825 \\ 2 & -0.165269 & -0.149187 & -0.0160818 \\ 3 & -0.158395 & -0.155999 & -0.0023952 \\ 4 & -0.157355 & -0.157038 & -0.0003166 \\ 5 & -0.157216 & -0.157177 & -0.0000393 \\ 6 & -0.157199 & -0.157194 & -0.0000047 \\ 7 & -0.157197 & -0.157196 & -0.0000005 \end{array} \right)$$

  • The integral summation has the harmonic number, not the digamma. The digamma appears when you expand the harmonic number. Also, I wrote it slightly different from what you did, my index starts at 1, not 0. – Alexandre Ribeiro Mar 11 '21 at 12:43
  • 1
    @ Claude Leibovici: Notice that the digamma function and harmonic number differ by Euler's constant. Hence the sums in question differ by $\gamma \log(2) /3$. – Dr. Wolfgang Hintze Mar 12 '21 at 04:09