Compute $P(B_{t}>0,B_{s}>0)$ for $t >s$ where $B$ is a standard BM
My attempt:
$P(B_{t}>0,B_{s}>0)=P(B_{t}-B_{s}+B_{s}>0,B_{s}>0)$ and now considering $X:=B_{t}-B_{s}\sim \mathcal{N}(0,t-s)$ and $Y:=B_{s}\sim\mathcal{N}(0,s)$ such that for $\xi$, $\eta$ standard normal iid random variables we have $X=\sqrt{t-s}\xi$ and $\sqrt{s}\eta$ such that we obtain:
$$ P(B_{t}-B_{s}+B_{s}>0,B_{s}>0)=P( \sqrt{t-s}\xi+\sqrt{s}\eta>0,\sqrt{s}\xi>0)=P( \sqrt{t-s}\xi+\sqrt{s}\eta>0,\xi>0)$$
Now if I want to switch the above into polar coordinates I have:
$$\{(r,\theta):\; \sqrt{t-s}r\cos(\theta)+\sqrt{s}r\sin(\theta)>0,r\cos(\theta)>0\}=\{(r,\theta):\; \sqrt{t-s}r\cos(\theta)+\sqrt{s}r\sin(\theta)>0,\theta \in (-\pi/2,\pi/2)\}\\ = \{(r,\theta):\; -\frac{\sqrt{t-s}}{\sqrt{s}}<\tan(\theta),\theta \in (-\pi/2,\pi/2)\} = \{(r,\theta):\; \arctan(-\frac{\sqrt{t-s}}{\sqrt{s}})<\theta,\theta \in (-\pi/2,\pi/2)\}$$
This looks rather ugly, am I on the right path?