2

Find the residue : \begin{equation} 1^{965}+2^{965}+...+2018^{965} \equiv x\ (\textrm{mod}\ 2021), x=? \end{equation} My attempt so far: \begin{equation} \varphi(965)=\varphi(5)\varphi(193)=768. \end{equation} But from Euler theorem applied for all numbers coprime with both 5 and 193 we have:\begin{equation} \Rightarrow\ 2^{768}\equiv 1\ (\textrm{mod}\ 2021) \Rightarrow\ 2^{965}\equiv 2^{197}\ (\textrm{mod}\ 2021). \end{equation} In the same fashion we get that \begin{equation} 3^{965}\equiv 3^{197}\ (\textrm{mod}\ 2021). \end{equation} Unfortunatelly this does not seem to work. Any ideas how to start?

Bill Dubuque
  • 272,048
Moscow1
  • 49

1 Answers1

2

I think with solving mod equivalences, people are afraid of "dirty solutions". But I think just bashing it out works just fine.

Note that $$x^{2p+1}+(-x)^{2p+1}=(x+-x)(x^{2p})=0$$So, the sum is equal to $$1^{965}+2^{965}\bmod{2021}\to1+2^{965}\bmod{2021}$$Note that $2^{11}=2048$, so $2^{11}\equiv3^3\bmod{2021}$

Can you solve from here?

Rushabh Mehta
  • 13,663