\begin{align} &\left( {\begin{array}{cccc|c} 1 & 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 & 1\\ \end{array} } \right) \text{in}\ \mathbb{Z}_{2} \\ &=\left( {\begin{array}{cccc|c} 1 & 0 & 1 & 0 & 0\\ 0 & 1 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 0\\ \end{array} } \right) \end{align}
I set $z=t=0 (x,y,z,t)$ and I got a partial solution $(0,1,0,0).$
I solved two homogeneous matrices once for $z = 1$ and $t = 0$, then for $z = 0$ and $t = 1$ and I got two solutions $(1,1,1,0)$ and $(1,1,0,1).$
Then, I got $(0,1,0,0) + a*(1,1,1,0)+b*(1,1,0,1$)
Therefore, all possible results are $(0,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,1)$
Would this be correct?